Pierre Lévy tiendra un séminaire sur IEML pendant trois après-midi (13h-17h) les 24, 25 et 26 octobre 2022 à l’Université de Montréal, dans la salle C-8132, Pavillon Lionel-Groulx, 3150 Jean-Brillant.

PROGRAMME DE L’ATELIER IEML 2022

  • L’heure est celle de Montréal (Eastern Time Zone)
  • Le lien pour participer en ligne sera: meet.jit.si/atelierIEML2022
  • La mise à disposition des documents et la discussion en ligne auront lieu sur le serveur Discord “INTLEKT Metadata”

Première séance 24 Oct. 13h-17h 

  • Présentation générale de la langue et du projet IEML
  • La nouvelle grammaire et le nouvel éditeur
  • Exercice pratique : fabriquer de nouveaux concepts (l’instruction @node)

Seconde séance 25 Oct. 13h-17h

  • Présentation d’exemples d’ontologies en IEML (psychiatrie et autres)
  • Comment concevoir une ontologie ou un modèle de données en IEML?
  • Exercice pratique : fabriquer des *paradigmes* de concepts (les instructions @paranode et @table)

Troisième séance 26 Oct 13h-17h

  • Présentation de la librairie IEML open-source (un gros parseur) en C++ par Louis Van Beurden
  • Comment transformer IEML en projet collectif-collaboratif open-source?
  • Exercice pratique : fabriquer des liens (l’instruction @link)

La problématique est définie dans le texte qui suit.

L’université de Montréal

La recherche en sciences humaines et sociales utilise de manière croissante les bases de données, l’analyse automatique, voire l’intelligence artificielle. D’autre part, les résultats de la recherche sont de plus en plus disponibles en ligne sur les blogs des chercheurs, certains réseaux sociaux, les sites web des revues, mais aussi dans des moteurs de recherches spécialisés comme ISIDORE. Tout ceci pose de façon cruciale le problème d’une catégorisation interopérable des données et des documents en sciences humaines et sciences sociales. La question ne se posait pas (ou moins gravement) lorsque chaque bibliothèque, voire chaque pays, avait son système de classement cohérent. Mais dans le nouvel espace numérique, la multiplicité des langues et des systèmes de classifications incompatibles fragmente la mémoire. 


Un premier niveau de réponse à ce problème est fourni par des *formats standards* pour les métadonnées sémantiques, notamment RDF (Resource Description Framework) proposé par le WWW Consortium. Signalons également d’autres formats standards comme JSON LD et Graph QL. Mais il ne s’agit dans tous ces cas que d’une interopérabilité technique, au niveau de la forme des fichiers. Pour résoudre le problème de l’interopérabilité sémantique (traitant de la cohérence des architectures de concepts) on a élaboré des *modèles standards*. Par exemple schema.org pour les sites web, CIDOC-CRM pour le domaine culturel, etc. Il existe de tels modèles pour de nombreux domaines, de la finance à la médecine, mais – notons-le – aucun d’eux n’unifie l’ensemble des sciences humaines. Non seulement plusieurs modèles se font concurrence pour un domaine, mais les modèles eux-mêmes sont hypercomplexes et relativement rigides, au point que même les spécialistes n’en maîtrisent qu’une petite partie. De plus, ces modèles sont exprimés en langues naturelles – le plus souvent en anglais – avec les problèmes de traduction et d’ambiguïté que cela suppose. 


Afin de résoudre le problème de l’interopérabilité sémantique dans la catégorisation des données en sciences humaines et sociales, nous proposons d’expérimenter une approche à la fois plus souple et plus générale que celle des modèles standards: une langue documentaire standard capable d’exprimer n’importe quel modèle ou ontologie et se traduisant dans toutes les langues naturelles. On trouvera ici une rapide description d’IEML en français.


IEML (Information Economy Metalanguage) développé par Pierre Lévy depuis plusieurs années est un langage artificiel (1) ayant le même pouvoir d’expression et de traduction que n’importe quelle langue naturelle, et (2) dont la grammaire et la sémantique sont régulières et calculables. IEML est le seul langage à posséder ces deux propriétés. IEML peut servir de système de métadonnées, assurant l’interopérabilité sémantique des bases de données, quel que soit le domaine. Grâce à sa nature régulière, IEML est également destiné à soutenir la prochaine génération d’intelligence artificielle “neuro-sémantique”. Voir sur ce blog un article d’une vingtaine de pages qui situe IEML dans le paysage général de l’intelligence artificielle. Un outil open-source, l’éditeur IEML (basé sur un parseur en C++) permet de modéliser finement des domaines complexes au moyen de graphes de connaissances ou ontologies. Les modèles sont générés à l’aide d’un langage de programmation déclaratif original et pourront être explorés de manière interactive sous forme d’hypertextes, de tables et de graphes. Les modèles pourront être exportés dans n’importe quel format standard.


L’objectif global du séminaire consiste à réunir des leaders établis et émergents dans les domaines de la recherche, de l’édition et de la fouille de données en humanités numériques pour faire le point sur les récents développements d’IEML. On présentera notamment une ontologie déjà construite et les enseignements méthodologiques issus des travaux en cours. Les trois jours d’échanges intensifs se tiendront sous la direction de Pierre Lévy (Professeur associé à l’Université de Montréal, membre de la Société Royale du Canada) et Marcello Vitali-Rosati (Chaire de recherche du Canada en écritures numériques et professeur titulaire en littérature française à l’Université de Montréal).”