biface

Le concepteur

J’ai saisi dès la fin des années 1970 que la cognition était une activité sociale et outillée par des technologies intellectuelles. Il ne faisait déjà aucun doute pour moi que les algorithmes allaient transformer le monde. Et si je réfléchis au sens de mon activité de recherche depuis les trente dernières années, je réalise qu’elle a toujours été orientée vers la construction d’outils cognitifs à base d’algorithmes.

A la fin des années 1980 et au début des années 1990, la conception de systèmes experts et la mise au point d’une méthode pour l’ingénierie des connaissances m’ont fait découvrir la puissance du raisonnement automatique (J’en ai rendu compte dans De la programmation considérée comme un des beaux-arts, Paris, La Découverte, 1992). Les systèmes experts sont des logiciels qui représentent les connaissances d’un groupe de spécialistes sur un sujet restreint au moyen de règles appliquées à une base de données soigneusement structurée.  J’ai constaté que cette formalisation des savoir-faire empiriques menait à une transformation de l’écologie cognitive des collectifs de travail, quelque chose comme un changement local de paradigme. J’ai aussi vérifié in situ que les systèmes à base de règles fonctionnaient en fait comme des outils de communication de l’expertise dans les organisations, menant ainsi à une intelligence collective plus efficace. J’ai enfin expérimenté les limites de la modélisation cognitive à base purement logique : elle ne débouchait alors, comme les ontologies d’aujourd’hui, que sur des micro-mondes de raisonnement cloisonnés. Le terme d’« intelligence artificielle », qui évoque des machines capables de décisions autonomes, était donc trompeur.

Je me suis ensuite consacré à la conception d’un outil de visualisation dynamique des modèles mentaux (Ce projet est expliqué dans L’Idéographie dynamique, vers une imagination artificielle, La Découverte, Paris, 1991). Cet essai m’a permis d’explorer la complexité sémiotique de la cognition en général et du langage en particulier. J’ai pu apprécier la puissance des outils de représentation de systèmes complexes pour augmenter la cognition. Mais j’ai aussi découvert à cette occasion les limites des modèles cognitifs non-génératifs, comme celui que j’avais conçu. Pour être vraiment utile, un outil d’augmentation intellectuelle devait être pleinement génératif, capable de simuler des processus cognitifs et de faire émerger de nouvelles connaissances.

Au début des années 1990 j’ai co-fondé une start up qui commercialisait un logiciel de gestion personnelle et collective des connaissances. J’ai été notamment impliqué dans l’invention du produit, puis dans la formation et le conseil de ses utilisateurs (Voir Les Arbres de connaissances, avec Michel Authier, La Découverte, Paris, 1992). Les Arbres de connaissances intégraient un système de représentation interactive des compétences et connaissances d’une communauté, ainsi qu’un système de communication favorisant l’échange et l’évaluation des savoirs. Contrairement aux outils de l’intelligence artificielle classique, celui-ci permettait à tous les utilisateurs d’enrichir librement la base de données commune. J’ai retenu de mon expérience dans cette entreprise la nécessité de représenter les contextes pragmatiques par des simulations immersives, dans lesquelles chaque ensemble de données sélectionné (personnes, connaissances, projets, etc.) réorganise l’espace autour de lui et génère automatiquement une représentation singulière du tout : un point de vue. Mais j’ai aussi rencontré lors de ce travail le défi de l’interopérabilité sémantique, qui allait retenir mon attention pendant les vingt-cinq années suivantes. En effet, mon expérience de constructeur d’outils et de consultant en technologies intellectuelles m’avait enseigné qu’il était impossible d’harmoniser la gestion personnelle et collective des connaissances à grande échelle sans langage commun. La publication de “L’intelligence collective” (La Découverte, Paris, 1994)  traduisait en théorie ce que j’avais entrevu dans ma pratique : de nouveaux outils d’augmentation cognitive à support algorithmique allaient supporter des formes de collaboration intellectuelle inédites. Mais le potentiel des algorithmes ne serait pleinement exploité que grâce à un métalangage rassemblant les données numérisées dans le même système de coordonnées sémantique.

A partir du milieu des années 1990, pendant que je dévouais mon temps libre à concevoir ce système de coordonnées (qui ne s’appelait pas encore IEML), j’ai assisté au développement progressif du Web interactif et social. Le Web offrait pour la première fois une mémoire universelle accessible indépendamment de la localisation physique de ses supports et de ses lecteurs. La communication multimédia entre points du réseau était instantanée. Il suffisait de cliquer sur l’adresse d’une collection de données pour y accéder. Au concepteur d’outils cognitifs que j’étais, le Web apparaissait comme une opportunité à exploiter.

L’utilisateur

J’ai participé pendant près d’un quart de siècle à de multiples communautés virtuelles et médias sociaux, en particulier ceux qui outillaient la curation collaborative des données. Grâce aux plateformes de social bookmarking de Delicious et Diigo, j’ai pu expérimenter la mise en commun des mémoires personnelles pour former une mémoire collective, la catégorisation coopérative des données, les folksonomies émergeant de l’intelligence collective, les nuages de tags qui montrent le profil sémantique d’un ensemble de données. En participant à l’aventure de la plateforme Twine créée par Nova Spivack entre 2008 et 2010, j’ai mesuré les points forts de la gestion collective de données centrée sur les sujets plutôt que sur les personnes. Mais j’ai aussi touché du doigt l’inefficacité des ontologies du Web sémantique – utilisées entre autres par Twine – dans la curation collaborative de données. Les succès de Twitter et de son écosystème m’ont confirmé dans la puissance de la catégorisation collective des données, symbolisée par le hashtag, qui a finalement été adopté par tous les médias sociaux. J’ai rapidement compris que les tweets étaient des méta données contenant l’identité de l’auteur, un lien vers les données, une catégorisation par hashtag et quelques mots d’appréciation. Cette structure est fort prometteuse pour la gestion personnelle et collective des connaissances. Mais parce que Twitter est fait d’abord pour la circulation rapide de l’information, son potentiel pour une mémoire collective à long terme n’est pas suffisamment exploité. C’est pourquoi je me suis intéressé aux plateformes de curation de données plus orientées vers la mémoire à long terme comme Bitly, Scoop.it! et Trove. J’ai suivi sur divers forums le développement des moteurs de recherche sémantiques, des techniques de traitement du langage naturel et des big data analytics, sans y trouver les outils qui feraient franchir à l’intelligence collective un seuil décisif. Enfin, j’ai observé comment Google réunissait les données du Web dans une seule base et comment la firme de Mountain View exploitait la curation collective des internautes au moyen de ses algorithmes. En effet, les résultats du moteur de recherche sont basés sur les hyperliens que nous créons et donc sur notre collaboration involontaire. Partout dans les médias sociaux je voyais se développer la gestion collaborative et l’analyse statistique des données, mais à chaque pas je rencontrais l’opacité sémantique qui fragmentait l’intelligence collective et limitait son développement.

La future intelligence algorithmique reposera forcément sur la mémoire hypertextuelle universelle. Mais mon expérience de la curation collaborative de données me confirmait dans l’hypothèse que j’avais développée dès le début des années 1990, avant même le développement du Web. Tant que la sémantique ne serait pas transparente au calcul et interopérable, tant qu’un code universel n’aurait pas décloisonné les langues et les systèmes de classification, notre intelligence collective ne pourrait faire que des progrès limités.

Mon activité de veille et d’expérimentation a nourri mon activité de conception technique. Pendant les années où je construisais IEML, pas à pas, à force d’essais et d’erreurs, de versions, de réformes et de recommencements, je ne me suis jamais découragé. Mes observations me confirmaient tous les jours que nous avions besoin d’une sémantique calculable et interopérable. Il me fallait inventer l’outil de curation collaborative de données qui reflèterait nos intelligences collectives encore séparées et fragmentées. Je voyais se développer sous mes yeux l’activité humaine qui utiliserait ce nouvel outil. J’ai donc concentré mes efforts sur la conception d’une plateforme sémantique universelle où la curation de données serait automatiquement convertie en simulation de l’intelligence collective des curateurs.

Mon expérience de concepteur technique et de praticien a toujours précédé mes synthèses théoriques. Mais, d’un autre côté, la conception d’outils devait être associée à la connaissance la plus claire possible de la fonction à outiller. Comment augmenter la cognition sans savoir ce qu’elle est, sans connaître son fonctionnement ? Et puisque, dans le cas qui m’occupait, l’augmentation s’appuyait précisément sur un saut de réflexivité, comment aurais-je pu réfléchir, cartographier ou observer quelque chose dont je n’aurais eu aucun modèle ? Il me fallait donc établir une correspondance entre un outil interopérable de catégorisation des données et une théorie de la cognition. A suivre…