Archives for posts with tag: Collective intelligence

Comment penser la nouvelle sphère publique numérique? Je commencerai par évoquer le contexte anthropologique et démographique du basculement de la sphère publique dans l’environnement numérique. Dans un second temps, j’analyserai les nouvelles formes de mémoire et de communication supportées par le nouveau médium. J’évoquerai ensuite les figures de la domination et de l’aliénation propres à ce milieu de communication. Je terminerai, comme il se doit, par quelques perspectives d’émancipation.

1 Le contexte

Une nouvelle époque de la culture

Un des facteurs principaux de l’évolution des écosystèmes d’idées réside dans le dispositif matériel de production et de reproduction des symboles, mais aussi dans les systèmes « logiciels » d’écriture et de codage de l’information. Au cours de l’histoire, les symboles (avec les idées qu’ils portaient) ont été successivement pérennisés par l’écriture, allégés par l’alphabet et le papier, multipliés par l’imprimerie et les médias électriques.

A chaque étape, de nouvelles formes politiques sont apparues : villes, palais-temples et premiers états avec l’écriture, empires et cités avec l’alphabet ou le papier, états nations avec l’imprimerie et les médias électroniques.

Les symboles sont aujourd’hui numérisés et calculés, c’est-à-dire qu’une foule de robots logiciels – les algorithmes – les enregistrent, les comptent, les traduisent et en extraient des patterns. Les objets symboliques (textes, images fixes ou animées, voix, musiques, programmes, etc.) sont non seulement enregistrés, reproduits et transmis automatiquement, ils sont aussi générés et transformés de manière industrielle. En somme, l’évolution culturelle nous a menés au point où les écosystèmes d’idées se manifestent sous l’avatar de données animées par des algorithmes dans un espace virtuel ubiquitaire. Et c’est dans cet espace que se nouent, se maintiennent et se dénouent les liens sociaux, là que se jouent désormais les drames de la Polis… 

Le basculement démographique

L’hypothèse d’une mutation anthropologique rapide et de grande ampleur se fonde sur des données quantitatives qui ne prêtent pas à controverse.

Accès aux ordinateurs

Concernant l’accès aux ordinateurs, on peut considérer que 0,1 pour cent de la population mondiale avait un accès direct à un ordinateur en 1975 (avant la révolution de l’ordinateur personnel). Cette proportion se montait à 20% dans les pays riches en 1990 (avant la révolution du Web). En 2022, pour les pays européens, la proportion oscillait entre 65% (Grèce) et 95% (Luxembourg). A noter que ces derniers chiffres ne prennent pas en compte les téléphones portables.

Accès à l’Internet

La proportion de la population mondiale qui avait accès à l’Internet était d’environ 1% en 1990 (donc avant le Web), de 4% en 1999, de 24% en 2009, de de 51% en 2018 et de 65% en 2023. S selon l’Organisation internationale des télécommunications, environ 5 milliards de personnes sont des internautes. Toujours pour 2023, mais seulement en Europe, la proportion de la population branchée à l’Internet se monte à 93% (ce sont les données de l’Union Européenne).

Prise de connaissance des nouvelles

Pour compléter ces statistiques avec des données concernant plus directement la politique, 40% des européens et 50% des américains et canadiens prennent connaissance des nouvelles par les médias sociaux (je dis bien les médias sociaux et pas l’Internet en général). On dépasse partout les 50% pour les moins de quarante ans. Pour les données spécifiques concernant la lecture des journaux par opposition à la lecture de textes en ligne, les moins de trente ans lisent les nouvelles en ligne à 80% (données du Pew Research Center).

2 Mémoire et communication numérique

La nouvelle sphère publique

En somme, moins d’un siècle après l’invention des premiers ordinateurs, plus de soixante cinq pour cent de la population mondiale est branchée à l’internet et la mémoire du monde est numérisée. Qu’une information se trouve en un point du réseau et la voici partout. Du texte statique sur papier, nous sommes passé à l’hypertexte ubiquitaire, puis à l’Architexte surréaliste qui rassemble tous les symboles. Une mémoire virtuelle s’est mise à croître, secrétée par des milliards de vivants et de morts, fourmillant de langues, de musiques et d’images, grosse de rêves et de fantasmes, mêlant la science et le mensonge. La nouvelle sphère publique est multimédia, interactive, mondiale, fractale, stigmergique et – désormais – médiée par l’intelligence artificielle.

La nouvelle sphère publique est mondiale. Aussi bien le web que les grands médias sociaux comme Facebook, Twitter, LinkedIn, Telegram, Reddit, etc. sont internationaux et multilingues. La traduction automatique a atteint un point ou l’on peut maintenant comprendre, avec quelques erreurs, ce qu’un internaute écrit dans une autre langue. J’ajoute que, parallèlement à la traduction, la synthèse automatique de longs textes progresse, ce qui ajoute à la porosité des diverses bulles cognitives et sémantiques.

La sphère publique numérique est fractale, c’est-à-dire qu’elle se subdivise en sous-groupes, eux-mêmes subdivisés en sous-groupes, et ainsi de suite récursivement, avec toutes les réunions et intersections imaginables. Ces subdivisions recoupent des distinctions de plateformes, de langues, de zones géographiques, de centres d’intérêts, d’orientations politiques, etc. On peut donner comme exemples les groupes Facebook ou LinkedIn, les serveurs Discord, les canaux You-tube ou Telegram, les communautés de Reddit, etc.

L’intelligence collective stigmergique

Si l’échange de messages point à point a toujours lieu, la majeure part de la communication sociale s’effectue désormais de manière stigmergique. La notion de stigmergie est une des clés de la compréhension du fonctionnement de la sphère publique numérique. On distingue traditionnellement trois schémas de communication : un-un, un-plusieurs et plusieurs-plusieurs. Le schéma un-un correspond au dialogue, au courrier postal classique ou au téléphone traditionnel. Le schéma un-plusieurs décrit le dispositif où un éditeur/émetteur central envoie ses messages à une masse de récepteurs dits « passifs ». Ce dernier schéma correspond à la presse, au disque, à la radio et à la télévision. Internet représente une rupture parce qu’il permet à l’ensemble des participants d’émettre pour un grand nombre de récepteurs selon un schéma en réseau décentralisé « plusieurs vers plusieurs ». Cette dernière description est néanmoins trompeuse. En effet, si tout le monde émet pour tout le monde (ce qui est le cas), tout le monde ne peut pas écouter tout le monde. Ce qui se passe en réalité est que les internautes contribuent à alimenter une mémoire commune et prennent connaissance en retour du contenu de cette mémoire par l’intermédiaire de procédures de recherche et de sélection automatisées. Ce sont les fameux algorithmes de Google, (Page Rank), de Facebook, de Twitter, d’Amazon (recommandations), etc.

L’étymologie grecque explique assez bien le sens du mot « stigmergie » : des marques (stigma) sont laissées dans l’environnement par l’action ou le travail (ergon) de membres d’une collectivité, et ces marques guident en retour – et récursivement – leurs actions. Le cas classique est celui des fourmis qui laissent une traîne de phéromones sur leur passage lorsqu’elles ramènent de la nourriture à la fourmilière. L’odeur des phéromones incite d’autres fourmis à remonter leurs traces pour découvrir le butin et ramener des vivres à la ville souterraine en laissant par terre à leur tour un message parfumé.

On peut prétendre que toute forme d’écriture qui n’est pas précisément adressée est une forme de communication stigmergique : des traces sont déposées pour une lecture à venir et font office de mémoire externe d’une communauté. Si le phénomène est fort ancien, il a pris depuis le début du siècle une nouvelle ampleur. Plongés dans la nouvelle sphère publique numérique, nous communiquons par l’intermédiaire de la masse océanique de données qui nous rassemble. Les encyclopédistes de Wikipédia et les programmeurs de GitHub collaborent par l’intermédiaire d’une même base de données. A notre insu, chaque lien que nous créons, chaque étiquette ou hashtag apposée sur une information, chaque acte d’évaluation ou d’approbation, chaque « j’aime », chaque requête, chaque achat, chaque commentaire, chaque partage, toutes ces opérations modifient subtilement la mémoire commune, c’est-à-dire le magma inextricable des rapports entre les données. Notre comportement en ligne émet un flux continuel de messages et d’indices qui transforment la structure de la mémoire et contribuent à orienter l’attention et l’activité de nos contemporains. Nous déposons dans l’environnement virtuel des phéromones électroniques qui déterminent en boucle l’action des autres internautes et qui entraînent par-dessus le marché les neurones formels des intelligences artificielles (IA).

Le rôle de l’Intelligence artificielle dans la nouvelle sphère publique

Le cerveau biologique abstrait le détail des expériences actuelles en schémas d’interactions, ou concepts, codés par des patterns de circuits neuronaux. De la même manière, les modèles neuronaux de l’IA condensent les données innombrables de la mémoire numérique. Ils potentialisent les données actuelles en patterns et en patterns de patterns. Conditionnés par leur entraînement, les algorithmes peuvent alors reconnaître et reproduire des données correspondant aux formes apprises. Mais parce qu’ils ont abstrait des structures plutôt que de tout enregistrer, les voici capables de conceptualiser correctement des formes (d’image, de textes, de musique, de code…) qu’ils n’ont jamais rencontrées et de produire une infinité d’arrangements symboliques nouveaux. C’est pourquoi l’on parle d’intelligence artificielle générative.

La mémoire numérique est détachée de son lieu d’émission et de réception, mise en commun, en attente de lecture, suspendue dans les “nuages” de l’Internet, logicielle. Cette masse de donnée est maintenant virtualisée par des modèles neuronaux. Et les patterns cachés dans les myriades de couches et de connexions des cerveaux électroniques font retomber en pluie des objets symboliques inédits. Nous ne semons des données que pour récolter du sens.

L’IA nous offre un nouvel accès à la mémoire numérique mondiale. C’est aussi une manière de mobiliser cette mémoire pour automatiser des opérations symboliques de plus en plus complexes, impliquant l’interaction d’univers sémantiques et de systèmes de comptabilité hétérogènes.

3 Le côté obscur

L’état-plateforme et la nouvelle bureaucratie dans les nuages

Si les analyses qui précèdent ont quelque validité, le pouvoir politique se joue pour une bonne part dans la sphère publique numérique. Or son contrôle ultime se trouve « dans les nuages », aux mains des bureaucraties célestes qui calculent les interactions sociales et la mémoire. Les nuages, c’est-à-dire les réseaux de centres de données possédées par l’oligopole des GAFAM, BATX et compagnie. C’est pourquoi les prétendants à l’hégémonie politique mondiale, essentiellement les américains et les chinois, s’allient avec les seigneurs des données – ou les soumettent – parce que les oligarques numériques détiennent le contrôle matériel de la mémoire mondiale et de la sphère publique. Eux seuls ont d’ailleurs la capacité de mémoire et la puissance de calcul nécessaires à l’entraînement des modèles d’IA généraux dits « fondationnels ». Ce que j’appelle un « État-Plateforme » résulte de l’imbrication d’une super-puissance politique avec une fraction de l’oligarchie numérique.

La bureaucratie des nuages est plus efficace que celle des états-nations, héritée de l’ère de l’imprimerie. Déjà, plusieurs fonctions gouvernementales ou régaliennes sont assurées par les grandes plateformes ou par des réseaux numériques « décentralisés ». La liste qui suit n’est pas close :

  • Vérification de l’identité des personnes, reconnaissance faciale
  • Cartographie et cadastre
  • Création monétaire
  • Régulation du marché
  • Éducation et recherche
  • Fusion de la défense et de la cyberdéfense
  • Contrôle de la sphère publique, censure, propagande, “nudge” (coup de pouce statitique)
  • Surveillance
  • Biosurveillance

Les médias sociaux : addictions et manipulations

Notre allégeance aux seigneurs des données vient de la puissance de leurs centres de calcul, de leur efficacité logicielle et de la simplicité de leurs interfaces. Elle trouve aussi sa source dans notre dépendance à une architecture sociotechnique toxique, qui utilise la stimulation dopaminergique et les renforcements narcissiques addictifs de la communication numérique pour nous faire produire toujours plus de données. On sait combien, de ce point de vue, la santé mentale des populations adolescentes est à risque. En plus de la biopolitique évoquée par Michel Foucault, il faut donc maintenant considérer une psychopolitique à base de neuromarketing, de données personnelles et de gamification du contrôle.

Il faut s’y faire : la Polis a basculé dans la grande base de données mondiale de l’Internet. Dès lors, les luttes de pouvoir – toutes les luttes de pouvoir, qu’elles soient économiques, politiques ou culturelles – sont reconduites et compliquées dans le nouvel espace numérique. Sur le terrain glissant des médias sociaux, les camps qui s’affrontent disposent leurs armées de trolls coordonnées en temps réel, équipées de bots dernier cri, renseignées par l’analyse automatique des données et augmentées par l’apprentissage machine. Dans la guerre civile mondiale qui fait rage, politique intérieure et extérieure inextricablement mêlées, les nouveaux mercenaires sont les influenceurs. 

Mais toutes ces nouveautés n’invalident pas les règles classiques de la propagande, toujours d’actualité : répétition continuelle, simplicité des mots d’ordre, images mémorables, provocation affective et résonnance identitaire. Personne n’oublie non plus les conseils avisés de Machiavel pour amener l’ennemi à s’auto-détruire : « La guerre secrète consiste à se mettre dans la confidence d’une ville divisée, à se porter pour médiateur entre les deux partis jusqu’à ce qu’ils en viennent aux armes : et quand l’épée est enfin tirée à donner des secours prudemment dosés au parti le plus faible, autant dans le but de faire durer la guerre et de les laisser se consumer les uns par les autres, que pour se garder, par un secours trop massif, de révéler son dessein de les opprimer et de les maîtriser tous deux également. Si l’on suit soigneusement cette marche, on arrive presque toujours à son but. »[1]

La tête baissée sur nos smartphones, nous faisons tourner en boucle les stéréotypes qui renforcent nos identités éclatées et nos mémoires courtes sous le regard narquois des experts de l’intoxication, communicants stipendiés, spécialistes du marketing et agents d’influence géopolitiques…

IA et domination culturelle

Poursuivons cette revue des côtés obscurs de la nouvelle sphère publique par les enjeux de domination culturelle liés à l’Intelligence artificielle. On parle beaucoup des « biais » de tel ou tel modèle d’intelligence artificielle, comme s’il pouvait exister une IA non-biaisée ou neutre. Cette question est d’autant plus importante que, comme je l’ai suggéré plus haut, l’IA devient notre nouvelle interface avec les objets symboliques : stylo universel, lunettes panoramiques, haut-parleur général, programmeur sans code, assistant personnel. Les grands modèles de langue généralistes produits par les plateformes dominantes s’apparentent désormais à une infrastructure publique, une nouvelle couche du méta-médium numérique. Ces modèles généralistes peuvent être spécialisés à peu de frais avec des jeux de données issues d’un domaine particulier et de méthodes d’ajustement. On peut aussi les munir de bases de connaissances dont les faits ont été vérifiés.

Les résultats fournis par une IA découlent donc de plusieurs facteurs qui contribuent tous à son orientation ou si l’on préfère, à ses « biais ». a) Les algorithmes proprement dits sélectionnent les types de calcul statistique et les structures de réseaux neuronaux. b) Les données d’entraînement favorisent les langues, les cultures, les options philosophiques, les partis-pris politiques et les préjugés de toutes sortes de ceux qui les ont produites. c) Afin d’aligner les réponses de l’IA sur les finalités supposées des utilisateurs, on corrige (ou on accentue!) « à la main » les penchants des données par ce que l’on appelle le RLHF (Reinforcement Learning from Human Feed-back – en français : apprentissage par renforcement à partir d’un retour d’information humain). d) Finalement, comme pour n’importe quel outil, l’utilisateur détermine les résultats au moyen de consignes en langue naturelle (les fameux prompts). Il faut noter que des communautés d’utilisateurs s’échangent et améliorent collaborativement de telles consignes. La puissance de ces systèmes n’a d’égal que leur complexité, leur hétérogénéité et leur opacité. Le contrôle règlementaire de l’IA, sans doute nécessaire, semble difficile.

4 Perspectives d’émancipation

Littéracie numérique et pensée critique

Malgré tout ce qui vient d’être dit, la sphère publique du XXIe siècle est plus ouverte que celle du XXe siècle : les citoyens des pays démocratiques y jouissent d’une grande liberté d’expression et peuvent choisir leurs sources d’information parmi un vaste éventail de spécialisations thématiques, de langues et d’orientations politiques. Cette liberté d’expression et d’information, la nouvelle puissance distribuée de création et d’analyse de données, sans oublier les possibilités de coordination sociale offertes par le nouveau médium, tout cela ne représente que des potentialités émancipatrices. Seule une véritable éducation à la pensée critique dans le nouvel environnement de communication permettra d’actualiser ce potentiel de citoyenneté renouvelée. Pour fixer les idées, une étude de la BBC a récemment montré que 50% des jeunes gens de 12 à 16 ans croient aux nouvelles partagées sur les médias sociaux sans les vérifier. Et nous savons d’expérience que les enfants ne sont pas les seuls sujets crédules. Idéalement, la nouvelle éducation à la pensée critique devrait enseigner aux futurs citoyens à s’organiser comme de petites agences de renseignement autonomes qui rangent leurs centres d’intérêts par ordre de priorité, sélectionnent soigneusement des sources diversifiées, analysent les données à partir d’hypothèses explicites et maintiennent une classification pertinente de leur mémoire numérique personnelle. Il faut apprendre à discerner les sources de données en termes de catégories organisatrices, de récits dominants et d’agendas. On inculquera le réflexe journalistique élémentaire de croiser les sources ainsi identifiées. Enfin, les élèves devraient être entraînés à l’intelligence collective stigmergique et à l’apprentissage collaboratif.

Pour une gouvernance de la sphère publique numérique

Je me contenterai ici d’indiquer quelques grandes orientations d’une nécessaire gouvernance de la nouvelle sphère publique plutôt que de déterminer précisément les moyens d’y parvenir. Si le pilotage par gros temps peut nécessiter de nombreux détours, le cap est clair : il s’agit de perfectionner, autant que possible, la dimension réflexive d’une intelligence collective déjà en acte.

  • A l’appui de cette finalité, la transparence des processus en ligne semble une condition sine qua non. Je vise en particulier, mais pas seulement, une description claire, brève et en langue naturelle des algorithmes et des données d’entraînement des IA.
  • A l’exemple de Wikimédia, efforçons-nous de maximiser les « communs » de la connaissance.
  • Ouvrons les jeux de données et les algorithmes selon la voie tracée par le mouvement du logiciel libre.
  • Assurons la souveraineté pratique et légale des individus et des groupes sur les données qu’ils produisent.
  • Enfin, décentralisons la gouvernance des interactions en ligne en favorisant les procédures consensuelles. Le mouvement social qui porte la blockchain indique ici un chemin possible.

Afin d’apporter ma pierre au projet d’une intelligence collective réflexive j’ai inventé une langue (IEML, Information Economy MetaLanguage) ayant la même capacité d’expression et de traduction que les langues naturelles mais qui a aussi la régularité d’une algèbre, permettant ainsi un calcul de la sémantique. Cette langue pourrait servir de système de coordonnées sémantique à la nouvelle sphère publique. Elle contribuerait ainsi à transformer la mémoire numérique en miroir de nos intelligences collectives. Dès lors, une boucle de rétroaction plus fluide entre les écosystèmes d’idées et les communautés qui les entretiennent nous rapprocherait de l’idéal d’une intelligence collective réflexive au service du développement humain et d’une démocratie renouvelée. Il ne s’agit pas d’entretenir quelque illusion sur la possibilité d’une transparence totale, mais plutôt d’ouvrir la voie à l’exploration critique d’un univers de sens infini.


[1] Discours sur la première décade de Tite-Live. La Pléiade, Gallimard, Paris, p. 588

Art: M.C. Escher

[For an English version of this post, click here.]

Le langage permet une coordination dynamique entre les réseaux de concepts entretenus par les membres d’une communauté, de l’échelle d’une famille ou d’une équipe, jusqu’aux plus grandes unités politiques ou économiques. Il permet également de raconter des histoires, de dialoguer, de poser des questions et de raisonner. Le langage soutient non seulement la communication mais aussi la pensée ainsi que l’organisation conceptuelle de la mémoire, complémentaire de son organisation émotionnelle et sensorimotrice.

Mais comment le langage fonctionne-t-il ? Du côté de la réception, nous entendons une séquence de sons que nous traduisons en un réseau de concepts, conférant ainsi son sens à une proposition. Du côté de l’émetteur, à partir d’un réseau de concepts que nous avons à l’esprit – un sens à transmettre – nous générons une séquence de sons. Le langage fonctionne comme une interface entre des séquences de sons et des réseaux de concepts. Et gardons en tête que les relations entre les concepts sont eux-mêmes des concepts.

Les chaînes de phonèmes (des sons), peuvent être remplacées par des séquences d’idéogrammes, de lettres, ou de gestes comme dans le cas de la langue des signes. L’interfaçage quasi-automatique entre une séquence d’images sensibles (sonores, visuelles, tactiles), et un graphe de concepts abstraits (catégories générales) reste constant parmi toutes les langues et systèmes d’écriture. 

Cette traduction réciproque entre une séquence d’images (le signifiant) et des réseaux de concepts (le signifié) suggère qu’une categorie  mathématique pourrait modéliser le langage en organisant une correspondance entre une algèbre et une structure de graphe. L’algèbre réglerait les opérations de lecture et d’écriture sur les textes, tandis que la structure de graphe organiserait les opérations sur les nœuds et les liens orientés. A chaque texte correspondrait un réseau de concepts. Les opérations sur les textes reflèteraient dynamiquement les opérations sur les graphes conceptuels. 

Nous avons besoin d’un langage régulier pour coder des chaînes de signifiants et nous pouvons transformer les séquences de symboles en arbres syntagmatiques (la syntaxe étant l’ordre du syntagme) et vice versa. Cependant, si son arbre syntagmatique – sa structure grammaticale interne – est indispensable à la compréhension du sens d’une phrase, il n’est pas suffisant. Parce que chaque expression linguistique repose à l’intersection d’un axe syntagmatique et d’un axe paradigmatique. L’arbre syntagmatique représente le réseau sémantique interne d’une phrase, l’axe paradigmatique représente son réseau sémantique externe et en particulier ses relations avec des phrases ayant la même structure, mais dont elle se distingue par quelques mots. Pour comprendre la phrase ” Je choisis le menu végétarien “, il faut bien sûr reconnaître que le verbe est “choisir”, le sujet “je” et l’objet “le menu végétarien” et savoir en outre que “végétarien” qualifie “menu”. Mais il faut aussi reconnaître le sens des mots et savoir, par exemple, que végétarien s’oppose à carné et à végétalien, ce qui implique de sortir de la phrase pour situer ses composantes dans les systèmes d’oppositions sémantiques de la langue. L’établissement de relations sémantiques entre concepts suppose que l’on reconnaisse les arbres syntagmatiques internes aux phrases, mais aussi les matrices paradigmatiques externes à la phrase qui organisent les concepts, que ces matrices soient propres à une langue ou à certains domaines pratiques.

Parce que les langues naturelles sont ambiguës et irrégulières, j’ai conçu une langue mathématique (IEML) traduisible en langues naturelles, une langue calculable qui peut coder algébriquement non seulement les arbres syntagmatiques, mais aussi les matrices paradigmatiques où les mots et les concepts prennent leur sens. Chaque phrase du métalangage IEML est située précisément à l’intersection d’un arbre syntagmatique et de matrices paradigmatiques. 

Sur la base de la grille syntagmatique-paradigmatique régulière d’IEML, il devient possible de générer et de reconnaître des relations sémantiques entre concepts de manière fonctionnelle : graphes de connaissance, ontologies, modèles de données… Toujours du côté de l’IA, un codage des étiquettes ou de la catégorisation des données dans cette langue algébrique qu’est IEML faciliterait l’apprentissage machine. Au-delà de l’IA, ma vision pour IEML est de favoriser l’interopérabilité sémantique des mémoires numériques et de développer une synergie entre l’autonomisation cognitive personnelle et la réflexivité de l’intelligence collective.

Sur le plan technique, il s’agit d’un projet léger et décentralisé: un dictionnaire IEML-langues naturelles, un analyseur syntaxique (parseur) open-source supportant les fonctions calculables sur les expressions de la langue et une plate-forme d’édition collaborative et de partage des concepts et ontologies. Le développement, la maintenance et l’utilisation d’un protocole sémantique basé sur l’IEML nécessitera un effort de recherche et de formation à long terme.

Pierre Lévy

A pandemia do coronavírus tem e continuará tendo efeitos catastróficos não só em termos de saúde física e mortalidade, mas também nas áreas de saúde mental e economia, com consequências sociais, políticas e culturais difíceis de calcular. Já se pode dizer que a escala do sofrimento e da destruição está se aproximando de uma guerra mundial.

Se ainda houver necessidade, estamos progredindo na consciência da unidade e da continuidade física de uma população humana planetária compartilhando um ambiente comum. O espaço público se deslocou para o virtual e todos estão participando da comunicação por meio das mídias sociais. As principais plataformas web e serviços online têm visto um aumento considerável na sua utilização e as infraestruturas de comunicação digital estão no limite da sua capacidade. Medicina, educação, trabalho e comércio à distância tornaram-se comuns, anunciando uma profunda mudança de hábitos e habilidades, mas também a possibilidade de limitar a poluição e as emissões de carbono. A Internet é mais do que nunca uma parte dos serviços essenciais e até mesmo dos direitos humanos. Para dar soluções a esta crise multifacetada, novas formas de inteligência coletiva estão contornando as instituições oficiais e as barreiras nacionais, particularmente nos campos científico e da saúde.

Ao mesmo tempo, intensificam-se os conflitos de interpretação, as guerras de informação e as batalhas de propaganda. Falsas notícias – também virais – estão chegando de todos os lados, aumentando a confusão e o pânico. A manipulação vergonhosa ou maliciosa de dados acompanha as disputas ideológicas, culturais ou nacionais em meio a uma reorganização geopolítica global. As trocas globais e locais estão se reequilibrando em favor destas últimas. O poder político está aumentando em todos os níveis de governo com uma notável fusão de inteligência, polícia e serviços médicos instrumentados por comunicações digitais e inteligência artificial. No interesse da saúde pública e da segurança nacional, a geolocalização universal dos indivíduos por telefone celular, pulseira ou anel está no horizonte. A identificação automática por reconhecimento facial ou batimento cardíaco fará o resto.

Para equilibrar essas tendências, precisamos de maior transparência do poder científico, político e econômico. A análise automática dos fluxos de dados deve se tornar uma habilidade essencial ensinada nas escolas, pois agora condiciona a compreensão do mundo. O aprendizado e os recursos analíticos devem ser compartilhados e abertos a todos de forma gratuita. Uma harmonização internacional e interlinguística dos sistemas de metadados semânticos ajudaria a processar e comparar dados e a suportar formas mais poderosas de inteligência coletiva do que aquelas que conhecemos hoje.

Com uma coroa de espinhos em seu crânio sangrento, a humanidade entra em uma nova era.

¹ Tradução livre por Zayr Claudio, doutorando em Ciência da Informação pela Universidade Federal de Minas Gerais, Brasil.

Lot Fleeing Sodom by Benjamin West

This is an english excerpt of my book “Collective Intelligence” published in French in 1994. Plenum Trade 1997 for the american edition. An ethics of inclusion and hospitality… Just seven pages.

I put forward in this paper a vision for a new generation of cloud-based public communication service designed to foster reflexive collective intelligence. I begin with a description of the current situation, including the huge power and social shortcomings of platforms like Google, Apple, Facebook, Amazon, Microsoft, Alibaba, Baidu, etc. Contrasting with the practice of these tech giants, I reassert the values that are direly needed at the foundation of any future global public sphere: openness, transparency and commonality. But such ethical and practical guidelines are probably not powerful enough to help us crossing a new threshold in collective intelligence. Only a disruptive innovation in cognitive computing will do the trick. That’s why I introduce “deep meaning” a new research program in artificial intelligence, based on the Information Economy  MetaLanguage (IEML). I conclude this paper by evoking possible bootstrapping scenarii for the new public platform.

The rise of platforms

At the end of the 20th century, one percent of the human population was connected to the Internet. In 2017, more than half the population is connected. Most of the users interact in social media, search information, buy products and services online. But despite the ongoing success of digital communication, there is a growing dissatisfaction about the big tech companies – the “Silicon Valley” – who dominate the new communication environment.

The big techs are the most valued companies in the world and the massive amount of data that they possess is considered the most precious good of our time. Silicon Valley owns the big computers: the network of physical centers where our personal and business data are stored and processed. Their income comes from their economic exploitation of our data for marketing purposes and from their sales of hardware, software or services. But they also derive considerable power from the knowledge of markets and public opinions that stems from their information control.

The big cloud companies master new computing techniques mimicking neurons when they learn a new behavior. These programs are marketed as deep learning or artificial intelligence even if they have no cognitive autonomy and need some intense training on huge masses of data. Despite their well known limitations, machine learning algorithms have effectively augmented the abilities of digital systems. Deep learning is now used in every economic sector. Chips specialized in deep learning are found in big data centers, smartphones, robots and autonomous vehicles. As Vladimir Putin rightly told young Russians in his speech for the first day of school in fall 2017: “Whoever becomes the leader in this sphere [of artificial intelligence] will become the ruler of the world”.

The tech giants control huge business ecosystems beyond their official legal borders and they can ruin or buy competitors. Unfortunately, the big tech rivalry prevents a real interoperability between cloud services, even if such interoperability would be in the interest of the general public and of many smaller businesses. As if their technical and economic powers were not enough, the big tech are now playing into the courts of governments. Facebook warrants our identity and warns our family and friends that we are safe when a terrorist attack or a natural disaster occurs. Mark Zuckerberg states that one of Facebook’s mission is to insure that the electoral process is fair and open in democratic countries. Google Earth and Google Street View are now used by several municipal instances and governments as their primary source of information for cadastral plans and other geographical or geospatial services. Twitter became an official global political, diplomatic and news service. Microsoft sells its digital infrastructure to public schools. The kingdom of Denmark opened an official embassy in Silicon Valley. Cryptocurrencies independent from nation states (like Bitcoin) are becoming increasingly popular. Blockchain-based smart contracts (powered by Ethereum) bypass state authentication and traditional paper bureaucracies. Some traditional functions of government are taken over by private technological ventures.

This should not come as a surprise. The practice of writing in ancient palace-temples gave birth to government as a separate entity. Alphabet and paper allowed the emergence of merchant city-states and the expansion of literate empires. The printing press, industrial economy, motorized transportation and electronic media sustained nation-states. The digital revolution will foster new forms of government. Today, we discuss political problems in a global public space taking advantage of the web and social media and the majority of humans live in interconnected cities and metropoles. Each urban node wants to be an accelerator of collective intelligence, a smart city. We need to think about public services in a new way. Schools, universities, public health institutions, mail services, archives, public libraries and museums should take full advantage of the internet and de-silo their datasets. But we should go further. Are current platforms doing their best to enhance collective intelligence and human development? How about giving back to the general population the data produced in social media and other cloud services, instead of just monetizing it for marketing purposes ? How about giving to the people access to cognitive powers unleashed by an ubiquitous algorithmic medium?

Information wants to be open, transparent and common

We need a new kind of public sphere: a platform in the cloud where data and metadata would be our common good, dedicated to the recording and collaborative exploitation of memory in the service of our collective intelligence. The core values orienting the construction of this new public sphere should be: openness, transparency and commonality

Firstly openness has already been experimented in the scientific community, the free software movement, the creative commons licensing, Wikipedia and many more endeavors. It has been adopted by several big industries and governments. “Open by default” will soon be the new normal. Openness is on the rise because it maximizes the improvement of goods and services, fosters trust and supports collaborative engagement. It can be applied to data formats, operating systems, abstract models, algorithms and even hardware. Openness applies also to taxonomies, ontologies, search architectures, etc. A new open public space should encourage all participants to create, comment, categorize, assess and analyze its content.

Then, transparency is the very ground for trust and the precondition of an authentic dialogue. Data and people (including the administrators of a platform), should be traceable and audit-able. Transparency should be reciprocal, without distinction between the rulers and the ruled. Such transparency will ultimately be the basis for reflexive collective intelligence, allowing teams and communities of any size to observe and compare their cognitive activity

Commonality means that people will not have to pay to get access to this new public sphere: all will be free and public property. Commonality means also transversality: de-silo and cross-pollination. Smart communities will interconnect and recombine all kind of useful information: open archives of libraries and museums, free academic publications, shared learning resources, knowledge management repositories, open-source intelligence datasets, news, public legal databases…

From deep learning to deep meaning

This new public platform will be based on the web and its open standards like http, URL, html, etc. Like all current platforms, it will take advantage of distributed computing in the cloud and it will use “deep learning”: an artificial intelligence technology that employs specialized chips and algorithms that roughly mimic the learning process of neurons. Finally, to be completely up to date, the next public platform will enable blockchain-based payments, transactions, contracts and secure records

If a public platform offers the same technologies as the big tech (cloud, deep learning, blockchain), with the sole difference of openness, transparency and commonality, it may prove insufficient to foster a swift adoption, as is demonstrated by the relative failures of Diaspora (open Facebook) and Mastodon (open Twitter). Such a project may only succeed if it comes up with some technical advantage compared to the existing commercial platforms. Moreover, this technical advantage should have appealing political and philosophical dimensions.

No one really fancies the dream of autonomous machines, specially considering the current limitations of artificial intelligence. Instead, we want an artificial intelligence designed for the augmentation of human personal and collective intellect.

Language as a platform

In order to augment the human intellect, we need both statistical and symbolic AI! Right now deep learning is based on neural networks simulation. It is enough to model roughly animal cognition (every animal species has neurons) but it is not refined enough to model human cognition. The difference between animal cognition and human cognition is the reflexive thinking that comes from language and explicit modelling. Why not adding a layer of semantic addressing on top of neural connectivity. In human cognition, the categories that organize perception, action, memory and learning are expressed linguistically so they may be reflected upon and shared in conversations. A language works like the semantic addressing system of a social virtual database.

But there is a problem with natural languages (english, french, arabic, etc.), they are irregular and do not lend themselves easily to machine understanding, I mean real understanding (projection of data on semantic networks) and not stochastic parroting. The current trend in natural language processing, an important field of artificial intelligence, is to use statistical algorithms and deep learning methods to understand and produce linguistic data. But instead of using only statistics, “deep meaning” adopts in addition a regular and computable metalanguage. I have designed IEML (Information Economy MetaLanguage) from the beginning to optimize semantic computing. IEML words are built from six primitive symbols and two operations: addition and multiplication. The semantic relations between IEML words follow the lines of their generative operations. The total number of words do not exceed 3 000. From its dictionary, the generative grammar of IEML allows the construction of recursive sentences that can define complex concepts and their relations. IEML would be the semantic addressing system of a social database.

Given large datasets, deep meaning allows the automatic computing of semantic relations between data, semantic analysis and semantic visualizations. This new technology fosters semantic interoperability: it decompartmentalizes tags, folksonomies, taxonomies, ontologies and languages. When on line communities categorize, assess and exchange semantic data, they generate explorable ecosystems of ideas that represent their collective intelligence. Take note that the vision of collective intelligence proposed here is distinct from the “wisdom of the crowd” model, that assumes independent agents and excludes dialogue and reflexivity. Just the opposite : deep meaning was designed from the beginning to nurture dialogue and reflexivity.

The main functions of the new public sphere

deepmeaning

In the new public sphere, every netizen will act as an author, editor, artist, curator, critique, messenger, contractor and gamer. The next platform weaves five functions together: curation, creation, communication, transaction and immersion.

By curation I mean the collaborative creation, edition, analysis, synthesis, visualization, explanation and publication of datasets. People posting, liking and commenting content on social media are already doing data curation, in a primitive, simple way. Active professionals in the fields of heritage preservation (library, museums), digital humanities, education, knowledge management, data-driven journalism or open-source intelligence practice data curation in a more systematic and mindful manner. The new platform will offer a consistent service of collaborative data curation empowered by a common semantic addressing system.

Augmented by deep meaning technology, our public sphere will include a semantic metadata editor applicable to any document format. It will work as a registration system for the works of the mind. Communication will be ensured by a global Twitter-like public posting system. But instead of the current hashtags that are mere sequences of characters, the new semantic tags will self-translate in all natural languages and interconnect by conceptual proximity. The blockchain layer will allow any transaction to be recorded. The platform will remunerate authors and curators in collective intelligence coins, according to the public engagement generated by their work. The new public sphere will be grounded in the internet of things, smart cities, ambient intelligence and augmented reality. People will control their environment and communicate with sensors, software agents and bots of all kinds in the same immersive semantic space. Virtual worlds will simulate the collective intelligence of teams, networks and cities.

Bootstrapping

How to bridge the gap from the fundamental research to the full scale industrial platform? Such endeavor will be much less expensive than the conquest of space and could bring a tremendous augmentation of human collective intelligence. Even if the network effect applies obviously to the new public space, small communities of pioneers will benefit immediately from its early release. On the humanistic side, I have already mentioned museums and libraries, researchers in humanities and social science, collaborative learning networks, data-oriented journalists, knowledge management and business intelligence professionals, etc. On the engineering side, deep meaning opens a new sub-field of artificial intelligence that will enhance current techniques of big data analytics, machine learning, natural language processing, internet of things, augmented reality and other immersive interfaces. Because it is open source by design, the development of the new technology can be crowdsourced and shared easily among many different actors.

Let’s draw a distinction between the new public sphere, including its semantic coordinate system, and the commercial platforms that will give access to it. This distinction being made, we can imagine a consortium of big tech companies, universities and governments supporting the development of the global public service of the future. We may also imagine one of the big techs taking the lead to associate its name to the new platform and developing some hardware specialized in deep meaning. Another scenario is the foundation of a company that will ensure the construction and maintenance of the new platform as a free public service while sustaining itself by offering semantic services: research, consulting, design and training. In any case, a new international school must be established around a virtual dockyard where trainees and trainers build and improve progressively the semantic coordinate system and other basic models of the new platform. Students from various organizations and backgrounds will gain experience in the field of deep meaning and will disseminate the acquired knowledge back into their communities.

Emission de radio (Suisse romande), 25 minutes en français.

Sémantique numérique et réseaux sociaux. Vers un service public planétaire, 1h en français

You-Tube Video (in english) 1h

What is IEML?

  • IEML (Information Economy MetaLanguage) is an open (GPL3) and free artificial metalanguage that is simultaneously a programming language, a pivot between natural languages and a semantic coordinate system. When data are categorized in IEML, the metalanguage compute their semantic relationships and distances.
  • From a “social” point of view, on line communities categorizing data in IEML generate explorable ecosystems of ideas that represent their collective intelligence.
  • Github.

What problems does IEML solve?

  • Decompartmentalization of tags, folksonomies, taxonomies, ontologies and languages (french and english for now).
  • Semantic search, automatic computing and visualization of semantic relations and distances between data.
  • Giving back to the users the information that they produce, enabling reflexive collective intelligence.

Who is IEML for?

Content curators

  • knowledge management
  • marketing
  • curation of open data from museums and libraries, crowdsourced curation
  • education, collaborative learning, connectionists MOOCs
  • watch, intelligence

Self-organizing on line communities

  • smart cities
  • collaborative teams
  • communities of practice…

Researchers

  • artificial intelligence
  • data analytics
  • humanities and social sciences, digital humanities

What motivates people to adopt IEML?

  • IEML users participate in the leading edge of digital innovation, big data analytics and collective intelligence.
  • IEML can enhance other AI techniques like machine learning, deep learning, natural language processing and rule-based inference.

IEML tools

IEML v.0

IEML v.0 includes…

  • A dictionary of  concepts whose edition is restricted to specialists but navigation and use is open to all.
  • A library of tags – called USLs (Uniform Semantic Locators) – whose edition, navigation and use is open to all.
  • An API allowing access to the dictionary, the library and their functionalities (semantic computing).

Intlekt v.0

Intlekt v.0 is a collaborative data curation tool that allows
– the categorization of data in IEML,
– the semantic visualization of collections of data categorized in IEML
– the publication of these collections

The prototype (to be issued in May 2018) will be mono-user but the full blown app will be social.

Who made it?

The IEML project is designed and led by Pierre Lévy.

It has been financed by the Canada Research Chair in Collective Intelligence at the University of Ottawa (2002-2016).

At an early stage (2004-2011) Steve Newcomb and Michel Biezunski have contributed to the design and implementation (parser, dictionary). Christian Desjardins implemented a second version of the dictionary. Andrew Roczniak helped for the first mathematical formalization, implemented a second version of the parser and a third version of the dictionary (2004-2016).

The 2016 version has been implemented by Louis van Beurden, Hadrien Titeux (chief engineers), Candide Kemmler (project management, interface), Zakaria Soliman and Alice Ribaucourt.

The 2017 version (1.0) has been implemented by Louis van Beurden (chief engineer), Eric Waldman (IEML edition interface, visualization), Sylvain Aube (Drupal), Ludovic Carré and Vincent Lefoulon (collections and tags management).

dice-1-600x903

Dice sculpture by Tony Cragg

Ce post est la version française d’un entretien en portugais (Brésil) avec le prof.  Juremir Machado da Silva

 

1 – JMDS: Le développement d’internet a pris plus de temps qu’on n’imagine, mais pour presque tout le monde internet c’est l’explosion du web pendant les années 1990. On peut dire d’une certaine façon que ça fait 30 ans qu’on est entré dans un nouvel imaginaire. Est-ce qu’il y a encore beaucoup de choses à venir ou le cycle a atteint son plafond?

PL: Internet s’est developpé de façon beaucoup plus rapide que n’importe quel autre système de communication. Il y avait moins de 1% de la population mondiale branchée au début des années 1990 et près de 45% une génération plus tard. On avance très vite vers 50% et plus…
Nous sommes seulement au début de la révolution du medium algorithmique. Au cours des générations suivantes nous allons assister à plusieurs grandes mutations. L’informatique ubiquitaire fondue dans le paysage et constamment accessible va se généraliser. L’accès à l’analyse de grandes masses de données (qui est aujourd’hui dans les mains des gouvernements et grandes entreprises) va se démocratiser. Nous aurons de plus en plus d’images de notre fonctionnement collectif en temps réel, etc. L’éducation va se recentrer sur la formation critique à la curation collective des données. La sphère publique va devenir internationale et va s’organiser par « nuages sémantiques » dans les réseaux sociaux. Les états vont passer de la forme « état-nation » à la forme « état en essaim » avec un territoire souverain et une strate déterritorialisée dans l’info-sphère ubiquitaire, les crypto-monnaies vont se répandre, etc.

2 –JMDS: On parte beaucoup d’internet des objets et de tout internet. Ce sont des vraies mutations ou juste des accélérations?

Internet peut être analysé en deux aspects conceptuellement distincts mais pratiquement interdépendants et inséparables. D’une part l’infosphère, les données, les algorithmes, qui sont immatériels et ubiquitaires : ce sont les « nuages ». D’autre part les capteurs, les gadgets, les smart-phones, les dispositifs portables de toutes sortes, les ordinateurs, les data centers, les robots, tout ce qui est inévitablement physique et localisé : les « objets ». Les nuages ne peuvent pas fonctionner sans les objets et vice versa: les objets ne peuvent pas fonctionner sans les nuages. L’Internet, c’est l’interaction constante du localisé et du délocalisé, des objets et des nuages. Tout cela est en quelque sorte logiquement déductible de l’automatisation de la manipulation symbolique au moyen de systèmes électroniques, mais nous allons de plus en plus en sentir les effets dans notre vie de tous les jours.

3 –JMDS:  Avec internet les prédictions sont déchaînées. On continue à parle de l’avenir des journaux en papier et du livre. Il y a ceux qui disent que le papier va cohabiter avec des nouveaux supports et ceux qui disent que c’est juste une question de temps pour la fin de l’imprimé. Les arguments des uns et des autres sont sérieux? Par exemple, par rapport au papier, l’affectif et l’effet de nostalgie n’y compte pas trop? C’est une affaire de génération?

PL: Je crois que la fin de la presse papier est une affaire de temps. Pour la recherche, l’éducation, l’information, tout va passer au numérique. En revanche, j’imagine qu’il va toujours y avoir des lecteurs sur papier pour des romans ou des livres rares, un peu comme il y a toujours un petit marché pour le vinyl en musique. Personnellement, j’aime lire des livres sur papier et les nouvelles sur Internet (surtout par Twitter), mais ce ne sont pas mes préférences personnelles qui sont en jeu… l’électrification, voire l’algorithmisation, de la lecture et de l’écriture sont inévitables.

4 –JMDS:  Après 30 ans de nouveautés comme les réseaux sociaux, quelle a été la grande transformation, le point principal de cette mutation?

PL: Depuis l’apparition du Web au milieu des années 1990, il n’y a pas eu de grande mutation technique, seulement une multitude de petits progrès. Sur un plan socio-politique, le grand basculement me semble le passage d’une sphère publique dominée par la presse, la radio et la télévision à une sphère publique dominée par les wikis, les blogs, les réseaux sociaux et les systèmes de curation de contenu où tout le monde peut s’exprimer. Cela signifie que le monopole intellectuel des journalistes, éditeurs, hommes politiques et professeurs est en train de s’éroder. Le nouvel équilibre n’a pas encore été trouvé mais l’ancien équilibre n’a plus cours.

5 –JMDS: Tu parles depuis beaucoup de temps d’intelligence collective et des collectifs intelligents. On voit cependant internet et ses réseaux sociaux utilisés pour le bien et pour le mal, par exemple, pour disséminer les idées radicales des extrémistes musulmans. Peut-on parler d’une « intelligence collective du mal » d’internet ou d’un outil de la bêtise universelle?

PL: Je parle d’intelligence collective pour signaler et encourager une augmentation des capacités cognitives en général, sans jugement de valeur : augmentation de la mémoire collective, des possibilités de coordination et de création de réseaux, des opportunités d’apprentissage collaboratif, de l’ouverture de l’accès à l’information, etc. Je pense que cet aspect est indéniable et que tous les acteurs intellectuels et sociaux responsables devraient se servir de ces nouvelles possibilités dans l’éducation, dans la gestion des connaissances dans les entreprises et les administrations, pour la délibération politique démocratique, etc. Il faut voir l’invention de Internet dans le prolongement de l’invention de l’écriture ou de l’imprimerie. Il s’agit d’une augmentation des capacités humaines de manipulation symbolique. Maintenant, le coeur de cette capacité c’est le langage, qui ne dépend d’aucune technique particulière et qui existe dès l’origine de l’espèce humaine. C’est grâce au langage qu’existent l’art, la culture, la religion, les valeurs, la complexité de nos institutions économiques, sociales, politiques… Mais qui dit langage dit aussi mensonge et manipulation. Qui dit valeurs dit bien ET mal, beau ET laid. Il est absurde d’imaginer qu’un instrument qui augmente les pouvoirs du langage en général ne laisserait subsister que le vrai, le bien et le beau. Vrai pour qui, bien pour qui ? Le vrai n’émerge que du dialogue ouvert des points de vue. Je dirais même plus, si l’on essayait de faire de l’Internet une machine à produire du vrai, du bien et du beau, on ne parviendrait qu’à un projet totalitaire, d’ailleurs voué à l’échec.

6 –JMDS:  Dans les réseaux sociaux la violence verbale est énorme. On s’attaque, on s’insulte, on divise le monde entre droite et gauche, les bons et les mauvais, les miens et les tiens. Il y a déjà des journalistes qui ferment leurs blogs aux commentaires des lecteurs saturés de post racistes, des menaces et d’insultes. On est encore dans une étape d’apprentissage de l’utilisation des ces outils?

PL: Si quelqu’un m’insulte ou m’envoie des choses choquantes sur Twitter, je le bloque et c’est tout! On n’aura jamais une humanité parfaite. En revanche, l’utilisateur d’Internet n’est pas un mineur intellectuel, il possède un grand pouvoir mais aussi une grande responsabilité. Le problème, surtout pour les enseignants, consiste à éduquer les utilisateurs. Il faut apprendre à décider de ses priorités, à gérer son attention, à faire un choix judicieux et une analyse critique des sources auxquelles on se branche, prêter attention à la culture de ses correspondants, apprendre à identifier les récits et leurs contradictions, etc. C’est cela, la nouvelle « literacy digitale »: devenir responsable!

7 –JMDS:  Une des questions les plus discutées à propos d’internet concerne les droits d’auteur et la gratuité. Les internautes ont tendance à exiger le tout gratuit. Mais l’information a un coût. Qui va payer? La publicité? Les journaux ferment leurs sites? Le temps de payer pour consommer sur internet est définitivement arrivé?

PL: Il n’est pas impossible de faire payer les utilisateurs pour de très bons services. Par ailleurs, oui, la publicité et surtout la vente des informations produites par les utilisateurs à des firmes de marketing constitue aujourd’hui la principale manière de « monétiser » les services en ligne. Le droit d’auteur est clairement en crise pour la musique et de plus en plus pour les films. Je voudrais souligner particulièrement le domaine de la recherche et de l’enseignement où les éditeurs apparaissent dorénavant comme le frein principal au partage de la connaissance. La rémunération de la création à l’âge du médium algorithmique est un problème complexe auquel je n’ai pas de réponse simple valable dans tous les cas…

8 –JMDS:  Tu as parlé aussi de démocratie virtuelle. On peut dire aujourd’hui qu’on avance vers une nouvelle ère de démocratisation?

PL: Oui, dans la mesure où il est possible d’accéder à des sources d’information beaucoup plus diverses que dans le passé, dans la mesure aussi où tout le monde peut s’exprimer à destination d’un vaste public et enfin parce qu’il est beaucoup plus facile aux citoyens de se coordonner et de s’organiser à des fins de discussion, de délibération ou d’action. Cette « démocratie virtuelle » peut avoir un fondement local, comme dans certains projets de « villes intelligentes », mais il y a aussi une déterritorialisation ou une internationalisation de la sphère publique. Il est par exemple possible de suivre la vie politique de nombreux pays en direct ou de vivre au diapason de l’ensemble de la planète selon les points de vue ou les sujets qui nous intéressent. On ne peut pas non plus passer sous silence l’émergence de campagnes politiques utilisant toutes les techniques de l’analyse de données et du profilage marketing, ainsi que le monitoring – voire la manipulation – de l’opinion publique mondiale sur les réseaux sociaux par les agences de renseignements (de tous les pays).

9 –JMDS:  Internet a déjà changé notre façon de penser, de lire et d’organiser notre construction du savoir?

PL: C’est indéniable. L’accessibilité immédiate des dictionnaires, des encyclopédies (dont Wikipedia), des livres en accès ouvert ou payant, de multiples vidéos éducatives a mis l’équivalent d’immenses bibliothèques et médiathèques à la portée de tous, partout. De plus, nous pouvons nous abonner à de nombreux sites web spécialisés et nous connecter à des réseaux de personnes interessées par les mêmes sujets afin de construire nos connaissances de manière collaborative. Le développement de nouveaux types de réseaux de collaboration dans la recherche ou d’apprentissage dans l’enseignement (les fameux MOOCs) en témoignent clairement.

10 –JMDS:  Il y a une chanson au Brésil qui dit “malgré tout ce qu’on a fait et vécu nous sommes toujours les mêmes et vivons comme nos parents”. Sommes-nous toujours les mêmes ou bien l’Internet nous a changé et séparés de la vie de nos parents?

PL: Nous sommes toujours des êtres humains incarnés et mortels, heureux et malheureux. La condition humaine fondamentale ne change pas. Ce qui change c’est notre culture matérielle et intellectuelle. Notre puissance de communication s’est multipliée et distribuée dans l’ensemble de la société. La perception du monde qui nous entoure s’est aggrandie et précisée. Notre mémoire a augmenté. Nos capacités d’analyse de situations complexes à partir de flots de données vont bientôt transformer notre rapport à notre environnement biologique et social. Grâce à la quantité de données disponibles et à la croissance de notre puissance de calcul, nous allons probablement connaître au XXIe siècle une révolution des sciences humaines comparable à la révolution des sciences de la nature du XVIIe siècle. Nous sommes toujours les mêmes ET nous changeons.

Abstract

IEML is an artificial language that allows the automatic computing of (a) the semantic relationships internal to its texts and of (b) the semantic relationships between its texts. Such an innovation could have a positive impact on the development of human collective intelligence. While we are currently limited to logical and statistical analytics, semantic coding could allow large scale computing on the meaning of data, provided that these data are categorized in IEML. Moreover “big data” algorithms are currently monopolized by big companies and big governemnts. But according to the perspective adopted here, the algorithmic tools of the future will put data-anaytics, machine learning and reflexive collective intelligence in the hands of the majority of Internet users.
I will first describe the main components of an algorithm (code, operators, containers, instructions), then I will show that the growth of the algorithmic medium has been shaped by innovations in coding and containers addressing. The current limitations of the web (absence of semantic interoperability and statistical positivism) could be overcomed by the invention of a new coding system aimed at making the meaning computable. Finally I will describe the cognitive gains that can be secured from this innovation.

This paper has been published by Spanda Journal special issue on “Creativity & Collective Enlightenment”,  VI, 2, December 2015, p. 59-66

Our communications—transmission and reception of data—are based on an increasingly complex infrastructure for the automatic manipulation of symbols, which I call the algorithmic medium because it automates the transformation of data, and not only their conservation, reproduction and dissemination (as with previous media). Both our data-centric society and the algorithmic medium that provides its tools are still at their tentative beginnings. Although it is still hard to imagine today, a huge space will open up for the transformation and analysis of the deluge of data we produce daily. But our minds are still fascinated by the Internet’s power of dissemination of messages, which has almost reached its maximum.
In the vanguard of the new algorithmic episteme, IEML (or any other system that has the same properties) will democratize the categorization and automatic analysis of the ocean of data. The use of IEML to categorize data will create a techno-social environment that is even more favourable for collaborative learning and the distributed production of knowledge. In so doing, it will contribute to the emergence of the algorithmic medium of the future and reflect collective intelligence in the form of ecosystems of ideas.
This text begins by analyzing the structure and functioning of algorithms and shows that the major stages in the evolution of the new medium correspond to the appearance of new systems for encoding and addressing data: the Internet is a universal addressing system for computers and the Web, a universal addressing system for data. However, the Web, in 2016, has many limitations. Levels of digital literacy are still low. Interoperability and semantic transparency are sorely lacking. The majority of its users see the Web only as a big multimedia library or a means of communication, and pay no attention to its capacities for data transformation and analysis. As for those concerned with the processing of big data, they are hindered by statistical positivism. In providing a universal addressing system for concepts, IEML takes a decisive step toward the algorithmic medium of the future. The ecosystems of ideas based on this metalanguage will give rise to cognitive augmentations that are even more powerful than those we already enjoy.

What is an algorithm?

To help understand the nature of the new medium and its evolution, let us represent as clearly as possible what an algorithm is and how it functions. In simplified explanations of programming, the algorithm is often reduced to a series of instructions or a “recipe.” But no series of instructions can play its role without the three following elements: first, an adequate encoding of the data; second, a well-defined set of reified operators or functions that act as black boxes; third, a system of precisely addressed containers capable of recording initial data, intermediate results and the end result. The rules—or instructions—have no meaning except in relation to the code, the operators and the memory addresses.
I will now detail these aspects of the algorithm and use that analysis to periodize the evolution of the algorithmic medium. We will see that the major stages in the growth of this medium are precisely related to the appearance of new systems of addressing and encoding, both for the containers of data and for the operators. Based on IEML, the coming stage of development of the algorithmic medium will provide simultaneously a new type of encoding (semantic encoding) and a new system of virtual containers (semantic addressing).

Encoding of data

For automatic processing, data must first be encoded appropriately and uniformly. This involves not only binary encoding (zero and one), but more specialized types of encoding such as encoding of numbers (in base two, eight, ten, sixteen, etc.), that of characters used in writing, that of images (pixels), that of sounds (sampling), and so on.

Operators

We must then imagine a set of tools or specialized micro-machines for carrying out certain tasks on the data. Let us call these specialized tools “operators.” The operators are precisely identified, and they act in a determined or mechanical way, always the same way. There obviously has to be a correspondence or a match between the encoding of the data and the functioning of the operators.
The operators were first identified insider computers: they are the elementary electronic circuits that make up processors. But we can consider any processor of data—however complex it is—as a “black box” serving as a macro-operator. Thus the protocol of the Internet, in addressing the computers in the network, at the same time set up a universal addressing system for operators.

Containers

In addition to a code for the data and a set of operators, we have to imagine a storehouse of data whose basic boxes or “containers” are completely addressed: a logical system of recording with a smooth surface for writing, erasing and reading. It is clear that the encoding of data, the operations applied to them and the mode of recording them—and therefore their addressing—must be harmonized to optimize processing.
The first addressing system of the containers is internal to computers, and it is therefore managed by the various operating systems (for example, UNIX, Windows, Apple OS, etc.). But at the beginning of the 1990s, a universal addressing system for containers was established above that layer of internal addressing: the URLs of the World Wide Web.

Instructions

The fourth and last aspect of an algorithm is an ordered set of rules—or a control mechanism—that organizes the recursive circulation of data between the containers and the operators. The circulation is initiated by a data flow that goes from containers to the appropriate operators and then directs the results of the operations to precisely addressed containers. A set of tests (if . . . , then . . .) determines the choice of containers from which the data to be processed are drawn, the choice of operators and the choice of containers in which the results are recorded. The circulation of data ends when a test has determined that processing is complete. At that point, the result of the processing—a set of encoded data—is located at a precise address in the system of containers.

The growth of the new medium

To shape the future development of the algorithmic medium, we have to first look at its historical evolution.

Automatic calculation (1940-1970)

From when can we date the advent of the algorithmic medium? We might be tempted to give its date of birth as 1937, since it was in that year that Alan Turing (1912-1954) published his famous article introducing the concept of the universal machine, that is, the formal structure of a computer. The article represents calculable functions as programs of the universal machine, that is, essentially, algorithms. We could also choose 1945, because in June of that year, John von Neumann (1903-1957) published his “First draft of a report on the EDVAC,” in which he presented the basic architecture of computers: 1) a memory containing data and programs (the latter encoding algorithms), 2) an arithmetic, logical calculation unit and 3) a control unit capable of interpreting the instructions of the programs contained in the memory. Since the seminal texts of Alan Turing and John von Neumann represent only theoretical advances, we could date the new era from the construction and actual use of the first computers, in the 1950s. It is clear, however, that (in spite of the prescience of a few visionaries ) until the end of the 1970s, it was still hard to talk about an algorithmic medium. One of the main reasons is that the computers at that time were still big, costly, closed machines whose input and output interfaces could only be manipulated by experts. Although already in its infancy, the algorithmic medium was not yet socially prevalent.
It should be noted that between 1950 and 1980 (before Internet connections became the norm), data flows circulated mainly between containers and operators with local addresses enclosed in a single machine.

The Internet and personal computers (1970-1995)

A new trend emerged in the 1970s and became dominant in the 1980s: the interconnection of computers. The Internet protocol (invented in 1969) won out over its competitors in addressing machines in telecommunication networks. This was also the period when computing became personal. The digital was now seen as a vector of transformation and communication of all symbols, not only numbers. The activities of mail, telecommunications, publishing, the press, and radio and television broadcasting began to converge.
At the stage of the Internet and personal computers, data processed by algorithms were always stored in containers with local addresses, but—in addition to those addresses—operators now had universal physical addresses in the global network. Consequently, algorithmic operators could “collaborate,” and the range of types of processing and applications expanded significantly.

The World Wide Web (1995-2020)

It was only with the arrival of the Web, around 1995, however, that the Internet became the medium of most communication—to the point of irreversibly affecting the functioning of the traditional media and most economic, political and cultural institutions.
The revolution of the Web can be explained essentially as the creation of a universal system of physical addresses for containers. This system, of course, is URLs. It should be noted that—like the Internet protocol for operators—this universal system is added to the local addresses of the containers of data, it does not eliminate them. Tim Berners-Lee’s ingenious idea may be described as follows: by inventing a universal addressing system for data, he made possible the shift from a multitude of actual databases (each controlled by one computer) to a single virtual database for all computers. One of the main benefits is the possibility of creating hyperlinks among any of the data of that universal virtual database: “the Web.”
From then on, the effective power and the capacity for collaboration—or inter-operation—between algorithms increased and diversified enormously, since both operators and containers now possessed universal addresses. The basic programmable machine became the network itself, as is shown by the spread of cloud computing.
The decade 2010-2020 is seeing the beginning of the transition to a data-centric society. Indeed, starting with this phase of social utilization of the new medium, the majority of interactions among people take place through the Internet, whether purely for socialization or for information, work, research, learning, consumption, political action, gaming, watches, and so on. At the same time, algorithms increasingly serve as the interface for relationships between people, relationships among data, and relationships between people and data. The increase in conflicts around ownership and free accessibility of data, and around openness and transparency of algorithms, are clear signs of a transition to a data-centric society. However, in spite of their already decisive role, algorithms are not yet perceived in the collective consciousness as the new medium of human communication and thought. People were still fascinated by the logic of dissemination of previous media.
The next stage in the evolution of the algorithmic medium—the semantic sphere based on IEML—will provide a conceptual addressing system for data. But before we look at the future, we need to think about the limitations of the contemporary Web. Indeed, the Web was invented to help solve problems in interconnecting data that arose around 1990, at a time when one percent of the world’s population (mainly anglophone) was connected. But now in 2014, new problems have arisen involving the difficulties of translating and processing data, as well as the low level of digital literacy. When these problems become too pronounced (probably around 2020, when more than half the world’s population will be connected), we will be obliged to adopt a conceptual addressing system on top of the layer of physical addressing of the WWW.

The limitations of the Web in 2016

The inadequacy of the logic of dissemination

From Gutenberg until the middle of the twentieth century, the main technical effect of the media was the mechanical recording, reproduction and transmission of the symbols of human communication. Examples include printing (newspapers, magazines, books), the recording industry, movies, telephone, radio and television. While there were also technologies for calculation, or automatic transformation of symbols, the automatic calculators available before computers were not very powerful and their usefulness was limited.
The first computers had little impact on social communication because of their cost, the complexity of using them and the small number of owners (essentially big corporations, some scientific laboratories and the government administrations of rich countries). It was only beginning in the 1980s that the development of personal computing provided a growing proportion of the population with powerful tools for producing messages, whether these were texts, tables of numbers, images or music. From then on, the democratization of printers and the development of communication networks among computers, as well as the increased number of radio and television networks, gradually undermined the monopoly on the massive dissemination of messages that had traditionally belonged to publishers, professional journalists and the major television networks. This revolution in dissemination accelerated with the arrival of the World Wide Web in the mid-1990s and blossomed into the new kind of global multimedia public sphere that prevails now at the beginning of the twenty-first century.
In terms of the structure of social communication, the essential characteristic of the new public sphere is that it permits anyone to produce messages, to transmit to a community without borders and to access messages produced and transmitted by others. This freedom of communication is all the more effective since its exercise is practically free and does not require any prior technical knowledge. In spite of the limits I will describe below, we have to welcome the new horizon of communication that is now offered to us: at the rate at which the number of connections is growing, almost all human beings in the next generation will be able to disseminate their messages to the entire planet for free and effortlessly.
It is certain that automatic manipulation—or transformation—of symbols has been practiced since the 1960s and 1970s. I have also already noted that a large proportion of personal computing was used to produce information and not only to disseminate it. Finally, the major corporations of the Web such as Google, Amazon, eBay, Apple, Facebook, Twitter and Netflix daily process huge masses of data in veritable “information factories” that are entirely automated. In spite of that, the majority of people still see and use the Internet as a tool for the dissemination and reception of information, in continuity with the mass media since printing and, later, television. It is a little as if the Web gave every individual the power of a publishing house, a television network and a multimedia postal service in real time, as well as access to an omnipresent global multimedia library. Just as the first printed books—incunabula—closely copied the form of manuscripts, we still use the Internet to achieve or maximize the power of dissemination of previous media. Everyone can transmit universally. Everyone can receive from anywhere.
No doubt we will have to exhaust the technical possibilities of automatic dissemination—the power of the media of the last four centuries—in order to experience and begin to assimilate intellectually and culturally the almost unexploited potential of automatic transformation—the power of the media of centuries to come. That is why I am again speaking of the algorithmic medium: to emphasize digital communication’s capacity for automatic transformation. Of course, the transformation or processing power of the new medium can only be actualized on the basis of the irreversible achievement of the previous medium, the universal dissemination or ubiquity of information. That was nearly fully achieved at the beginning of the twenty-first century, and coming generations will gradually adapt to automatic processing of the massive flow of global data, with all its unpredictable cultural consequences. There are at this time three limits to this process of adaptation: users’ literacy, the absence of semantic interoperability and the statistical positivism that today governs data analysis.

The problem of digital literacy

The first limit of the contemporary algorithmic medium is related to the skills of social groups and individuals: the higher their education level (elementary, secondary, university), the better developed their critical thinking, the greater their mastery of the new tools for manipulation of symbols and the more capable they are of turning the algorithmic medium to their advantage. As access points and mobile devices increase in number, the thorny question of the digital divide is less and less related to the availability of hardware and increasingly concerns problems of print literacy, media literacy and education. Without any particular skills in programming or even in using digital tools, the power provided by ordinary reading and writing is greatly increased by the algorithmic medium: we gain access to possibilities for expression, social relationships and information such as we could not even have dreamed of in the nineteenth century. This power will be further increased when, in the schools of the future, traditional literacy, digital literacy and understanding of ecosystems of ideas are integrated. Then, starting at a very young age, children will be introduced to categorization and evaluation of data, collection and analysis of large masses information and programming of semantic circuits.

The absence of semantic interoperability

The second limit is semantic, since, while technical connection is tending to become universal, the communication of meaning still remains fragmented according to the boundaries of languages, systems of classification, disciplines and other cultural worlds that are more or less unconnected. The “semantic Web” promoted by Tim Berners-Lee since the late 1990s is very useful for translating logical relationships among data. But it has not fulfilled its promise with regard to the interoperability of meaning, in spite of the authority of its promoter and the contributions of many teams of engineers. As I showed in the first volume of The Semantic Sphere, it is impossible to fully process semantic problems while remaining within the narrow limits of logic. Moreover, the essentially statistical methods used by Google and the numerous systems of automatic translation available provide tools to assist with translation, but they have not succeeded any better than the “semantic Web” in opening up a true space of translinguistic communication. Statistics are no more effective than logic in automating the processing of meaning. Here again, we lack a coding of linguistic meaning that would make it truly calculable in all its complexity. It is to meet this need that IEML is automatically translated into natural languages in semantic networks.

Statistical positivism

The general public’s access to the power of dissemination of the Web and the flows of digital data that now result from all human activities confront us with the following problem: how to transform the torrents of data into rivers of knowledge? The solution to this problem will determine the next stage in the evolution of the algorithmic medium. Certain enthusiastic observers of the statistical processing of big data, such as Chris Anderson, the former editor-in-chief of Wired, were quick to declare that scientific theories—in general!—were now obsolete. In this view, we now need only flows of data and powerful statistical algorithms operating in the computing centres of the cloud: theories—and therefore the hypotheses they propose and the reflections from which they emerge—belong to a bygone stage of the scientific method. It appears that numbers speak for themselves. But this obviously involves forgetting that it is necessary, before any calculation, to determine the relevant data, to know exactly what is being counted and to name—that is, to categorize—the emerging patterns. In addition, no statistical correlation directly provides causal relationships. These are necessarily hypotheses to explain the correlations revealed by statistical calculations. Under the guise of revolutionary thought, Chris Anderson and his like are reviving the old positivist, empiricist epistemology that was fashionable in the nineteenth century, according to which only inductive reasoning (that is, reasoning based solely on data) is scientific. This position amounts to repressing or ignoring the theories—and therefore the risky hypotheses based on individual thought—that are necessarily at work in any process of data analysis and that are expressed in decisions of selection, identification and categorization. One cannot undertake statistical processing and interpret its results without any theory. Once again, the only choice we have is to leave the theories implicit or to explicate them. Explicating a theory allows us to put it in perspective, compare it with other theories, share it, generalize from it, criticize it and improve it. This is even one of the main components of what is known as critical thinking, which secondary and university education is supposed to develop in students.
Beyond empirical observation, scientific knowledge has always been concerned with the categorization and correct description of phenomenal data, description that is necessarily consistent with more or less formalized theories. By describing functional relationships between variables, theory offers a conceptual grasp of the phenomenal world that make it possible (at least partially) to predict and control it. The data of today correspond to what the epistemology of past centuries called phenomena. To extend this metaphor, the algorithms for analyzing flows of data of today correspond to the observation tools of traditional science. These algorithms show us patterns, that is, ultimately, images. But the fact that we are capable of using the power of the algorithmic medium to observe data does not mean we should stop here on this promising path. We now need to use the calculating power of the Internet to theorize (categorize, model, explain, share, discuss) our observations, without forgetting to make our theorizing available to the rich collective intelligence.
In their 2013 book on big data, Viktor Mayer-Schonberger and Kenneth Cukier, while emphasizing the distinction between correlation and causality, predicted that we would take more and more interest in correlations and less and less in causality, which put them firmly in the empiricist camp. Their book nevertheless provides an excellent argument against statistical positivism. Indeed, they recount the very beautiful story of Matthew Maury, an American naval officer who in the mid-nineteenth century compiled data from log books in the official archives to establish reliable maps of winds and currents. Those maps were constructed from an accumulation of empirical data. But with all due respect for Cukier and Mayer-Schonberger, I would point out that such an accumulation would never have been useful, or even feasible, without the system of geographic coordinates of meridians and parallels, which is anything but empirical and based on data. Similarly, it is only by adopting a system of semantic coordinates such as IEML that we will be able to organize and share data flows in a useful way.
Today, most of the algorithms that manage routing of recommendations and searching of data are opaque, since they are protected trade secrets of major corporations of the Web. As for the analytic algorithms, they are, for the most part, not only opaque but also beyond the reach of most Internet users for both technical and economic reasons. However, it is impossible to produce reliable knowledge using secret methods. We must obviously consider the contemporary state of the algorithmic medium to be transitory.
What is more, if we want to solve the problem of the extraction of useful information from the deluge of big data, we will not be able to eternally limit ourselves to statistical algorithms working on the type of organization of digital memory that exists in 2016. We will sooner or later, and the sooner the better, have to implement an organization of memory designed from the start for semantic processing. We will only be able to adapt culturally to the exponential growth of data—and therefore transform these data into reflected knowledge—through a qualitative change of the algorithmic medium, including the adoption of a system of semantic coordinates such as IEML.

The semantic sphere and its conceptual addressing (2020…)

It is notoriously difficult to observe or recognize what does not yet exist, and even more, the absence of what does not yet exist. However, what is blocking the development of the algorithmic medium—and with it, the advent of a new civilization—is precisely the absence of a universal, calculable system of semantic metadata. I would like to point out that the IEML metalanguage is the first, and to my knowledge (in 2016) the only, candidate for this new role of a system of semantic coordinates for data.
We already have a universal physical addressing system for data (the Web) and a universal physical addressing system for operators (the Internet). In its full deployment phase, the algorithmic medium will also include a universal semantic code: IEML. This system of metadata—conceived from the outset to optimize the calculability of meaning while multiplying its differentiation infinitely—will open the algorithmic medium to semantic interoperability and lead to new types of symbolic manipulation. Just as the Web made it possible to go from a great many actual databases to one universal virtual database (but based on a physical addressing system), IEML will make it possible to go from a universal physical addressing system to a universal conceptual addressing system. The semantic sphere continues the process of virtualization of containers to its final conclusion, because its semantic circuits—which are generated by an algebra—act as data containers. It will be possible to use the same conceptual addressing system in operations as varied as communication, translation, exploration, searching and three-dimensional display of semantic relationships.
Today’s data correspond to the phenomena of traditional science, and we need calculable, interoperable metadata that correspond to scientific theories and models. IEML is precisely an algorithmic tool for theorization and categorization capable of exploiting the calculating power of the cloud and providing an indispensable complement to the statistical tools for observing patterns. The situation of data analysis before and after IEML can be compared to that of cartography before and after the adoption of a universal system of geometric coordinates. The data that will be categorized in IEML will be able to be processed much more efficiently than today, because the categories and the semantic relationships between categories will then become not only calculable but automatically translatable from one language to another. In addition, IEML will permit comparison of the results of the analysis of the same set of data according to different categorization rules (theories!).

Algo-medium

FIGURE 1 – The four interdependent levels of the algorithmic medium

When this symbolic system for conceptual analysis and synthesis is democratically accessible to everyone, translated automatically into all languages and easily manipulated by means of a simple tablet, then it will be possible to navigate the ocean of data, and the algorithmic medium will be tested directly as a tool for cognitive augmentation—personal and social—and not only for dissemination. Then a positive feedback loop between the collective testing and creation of tools will lead to a take-off of the algorithmic intelligence of the future.
In Figure 1, the increasingly powerful levels of automatic calculation are represented by rectangles. Each level is based on the “lower” levels that precede it in order of historical emergence. Each level is therefore influenced by the lower levels. But, conversely, each new level gives the lower levels an additional socio-technical determination, since it uses them for a new purpose.
The addressing systems, which are represented under the rectangles, can be considered the successive solutions—influenced by different socio-technical contexts—to the perennial problem of increasing the power of automatic calculation. An addressing system thus plays the role of a step on a stairway that lets you go from one level of calculation to a higher level. The last addressing system, that of metadata, is supplied by IEML or any other system of encoding of linguistic meaning that makes that meaning calculable, exactly as the system of pixels made images manipulable by means of algorithms.

The cognitive revolution of semantic encoding

We know that the algorithmic medium is not only a medium of communication or dissemination of information but also, especially, a ubiquitous environment for the automatic transformation of symbols. We also know that a society’s capacities for analysis, synthesis and prediction are based ultimately on the structure of its memory, and in particular its system for encoding and organizing data. As we saw in the previous section, the only thing the algorithmic medium now in construction lacks to become the matrix of a new episteme that is more powerful than today’s, which has not yet broken its ties to the typographical era, is a system of semantic metadata that is equal to the calculating power of algorithms.

Memory, communication and intuition

It is now accepted that computers increase our memory capacities, in which I include not only capacities for recording and recall, but also those for analysis, synthesis and prediction. The algorithmic medium also increases our capacities for communication, in particular in terms of the breadth of the network of contacts and the reception, transmission and volume of flows of messages. Finally, the new medium increases our capacities for intuition, because it increases our sensory-motor interactions (especially gestural, tactile, visual and sound interactions) with large numbers of people, documents and environments, whether they are real, distant, simulated, fictional or mixed. These augmentations of memory, communication and intuition influence each other to produce an overall augmentation of our field of cognitive activity.
Semantic encoding, that is, the system of semantic metadata based on IEML, will greatly increase the field of augmented cognitive activity that I have described. It will produce a second level of cognitive complexity that will enter into dynamic relationship with the one described above to give rise to algorithmic intelligence. As we will see, semantic coding will generate a reflexivity of memory, a new perspectivism of intellectual intuition and an interoperability of communication.

Reflexive memory

The technical process of objectivation and augmentation of human memory began with the invention of writing and continued up to the development of the Web. But in speaking of reflexive memory, I go beyond Google and Wikipedia. In the future, the structure and evolution of our memory and the way we use it will become transparent and open to comparison and critical analysis. Indeed, communities will be able to observe—in the form of ecosystems of ideas—the evolution and current state of their cognitive activities and apply their capacities for analysis, synthesis and prediction to the social management of their knowledge and learning. At the same time, individuals will become capable of managing their personal knowledge and learning in relation to the various communities to which they belong. So much so that this reflexive memory will enable a new dialectic—a virtuous circle—of personal and collective knowledge management. The representation of memory in the form of ecosystems of ideas will allow individuals to make maximum use of the personal growth and cross-pollination brought about by their circulation among communities.

Perspectivist intellectual intuition

Semantic coding will give us a new sensory-motor intuition of the perspectivist nature of the information universe. Here we have to distinguish between the conceptual perspective and the contextual perspective.
The conceptual perspective organizes the relationships among terms, sentences and texts in IEML so that each of these semantic units can be processed as a point of view, or a virtual “centre” of the ecosystems of ideas, organizing the other units around it according to the types of relationships it has with them and their distance from it.
In IEML, the elementary units of meaning are terms, which are organized in the IEML dictionary (optimized for laptops + Chrome) in paradigms, that is, in systems of semantic relationships among terms. In the IEML dictionary, each term organizes the other terms of the same paradigm around it according to its semantic relationships with them. The different paradigms of the IEML dictionary are in principle independent of each other and none has precedence over the others a priori. Each of them can, in principle, be used to filter or categorize any set of data.
The sentences, texts and hypertexts in IEML represent paths between the terms of various paradigms, and these paths in turn organize the other paths around them according to their relationships and semantic proximity in the ecosystems of ideas. It will be possible to display this cascade of semantic perspectives and points of view using three-dimensional holograms in an immersive interactive mode.
Let us now examine the contextual perspective, which places in symmetry not the concepts within an ecosystem of ideas, but the ecosystems of ideas themselves, that is, the way in which various communities at different times categorize and evaluate data. It will thus be possible to display and explore the same set of data interactively according to the meaning and value it has for a large number of communities.
Reflexive memory, perspectivist intuition, interoperable and transparent communication together produce a cognitive augmentation characteristic of algorithmic intelligence, an augmentation more powerful than that of today.

Interoperable and transparent communication

The interoperability of communication will first concern the semantic compatibility of various theories, disciplines, universes of practices and cultures that will be able to be translated into IEML and will thus become not only comparable but also capable of exchanging concepts and operating rules without loss of their uniqueness. Semantic interoperability will also cover the automatic translation of IEML concepts into natural languages. Thanks to this pivot language, any semantic network in any natural language will be translated automatically into any other natural language. As a result, through the IEML code, people will be able to transmit and receive messages and categorize data in their own languages while communicating with people who use other languages. Here again, we need to think about cultural interoperability (communication in spite of differences in conceptual organization) and linguistic interoperability (communication in spite of differences in language) together; they will reinforce each other as a result of semantic coding.

DansL'usine

MY TRIP

IBERTIC (Instituto Iberoamericano de TIC in Education) invited me in Buenos Aires for a series of conferences and consultations during the week of 13th to 17th of april 2015. I gave four speeches in front of different audiences: one of my main speeches was about « collective intelligence for educators » and another about « The emergence of reflexive collective intelligence ».

I had several meetings with people engaged in teaching, training and policy coordination related to « TIC and education ».
Argentina has a big state-led program (Connectar Igualidad) to give a computer to every student in secondary education. I visited the warehouse where these computers are packed and sent to the students and I had a look at the mainly « open » applications included in the package. I visited also Canal Encuentro, the state-run educational television, where a team related to the program « Connectar Igualidad » is building one portal for educators and another one for the students. These portals are supposed to provide learning resources and tools for communication and collaboration.

STORIES FROM MY PERSONAL EXPERIENCE

During this trip I had, at several occasions, the opportunity to speak about my own experience in using TICs as an educator. In the various courses that I teach at the University of Ottawa, I ask my students to participate to a closed Facebook group, to register on Twitter (and to follow me: @plevy), to use a collaborative repository in the cloud (a social bookmarking plateform or a curation plateform like Scoop.it) and to open a blog if they don’t have already one.

– The Facebook group is used to share the syllabus, our agenda, the mandatory lectures (all of them on line « at one click »), our electronic addresses (Twitter, blog, collaborative memory plateform), the questions asked by the students, etc. The students can participate to the collective writing and editing of « mini-wikis » inside the FB group. They are invited to suggest good reads related to the course by adding commented links.

– Twitter is used through a careful use of hashtags. I use it for quick real-time feed-back during the course: to check what the students have understood. Then, every 2 or 3 weeks, I invite students to look back at their collective traces on Twitter to recollect what they have learned and to ask questions if something is not clear. I experimented also a « twitter exam » where the students have to evaluate my tweets: no reaction if my tweet is false, a favorite if it contain some truth, a retweet if they agree and a retweet plus a favorite if they strongly agree. After having reviewed the tweets and their responses, I ask to the students what are – according to them – their worst possible errors of appreciation. The final evaluation of the exam (that is, of their reactions to my tweets) is made by applying to the students the rules that they have determined themselves! Finally I teach them the practical use of Twitter lists.

– The collaborative repository in the cloud (Diigo, Scoop.it) is used to teach the sudents the use of categories or « tags » to organize a common long-term memory, as opposed to the ephemeral information on popular social media.

– The blogs are used as a way to display the assignments. The students are encouraged to add images and links. For the last assignment they have to describe – from their own point of view – the main points that they have learned during the course.

At the end of a semester, the students have not only acquired knowledge about the subject matter, they also improved their collaborative learning skills in a trans-platform environment!

MY TAKE-AWAY ADVICE FOR IBERTIC AND THE EDUCATIONAL COMMUNITY IN ARGENTINA

A social network is a human reality
As « how » once told me: a social network is neither a platform nor a software: it is a human reality. In the same vein, building a closed platform is in no way a solution to collaboration, training, learning or communication problems. The solution is to grow a « community of practice » or a « collaborative learning network » that will use all the available and relevant platforms, including face to face meetings and well known commercial platforms that are available at no cost.

There is no such thing as an educational technology
There are no educational technologies. There are only educational or learning uses of technology. The most important things are not the technologies by themselves (software, platforms, resources) but the educational practices and the effective collaborative learning processes.

The new literacy
The new intellectual literacy encompasses all collaborative data curation skills, including attention management, formal modeling, memory management, critical thinking, stimergic communication, etc. It is neither a discipline nor a specialized knowledge but a consistent set of transversal competencies that should be strengthened in all kinds of learning practices. Of course, this literacy cannot be taught by people who do not master it!

Staying motivated despite constraints
The educational community faces a lot of constraints, particularly in not so rich countries:
– lack of infrastructure (hardware, software, connectivity),
– lack of institutional facilitation (innovation and openness are praised in theory but not encouraged in practise),
– lack of knowledge and skills on the educator’s side.
The educator should consider herself / himself as an artist transforming these constraints into beauty through a creative process. Do what you can in your circonstances. There are no perfect method, software or platform that will solve all the problems magically in every environment and context. Teaching is itself an open-ended (collaborative) learning process.

I recommand this video in spanish about Personal Learning Environments