Archives for posts with tag: artificial intelligence

Aujourd’hui, le monde entier se précipite vers l’IA statistique, les modèles neuronaux et/ou l’IA générative. Mais nous savons que, bien que ces modèles soient utiles, nous avons toujours besoin de modèles symboliques ou, si vous préférez, de graphes de connaissances, en particulier dans le domaine de la gestion des connaissances.

Mais pourquoi exactement avons-nous encore besoin de modèles symboliques en plus des modèles neuronaux ? Parce que les modèles symboliques sont capables de représenter la connaissance de manière explicite, ce qui comporte beaucoup d’avantages. Dans cet exposé, je vais plaider en faveur de l’interopérabilité sémantique (ou conceptuelle) entre les graphes de connaissances, et je présenterai IEML, un langage que j’ai inventé à la Chaire de recherche du Canada en intelligence collective avec l’aide de mon équipe d’ingénieurs.

Figure 1

Si vous êtes familier avec le domaine de la gestion des connaissances, vous savez qu’il existe une dialectique entre les connaissances implicites (en bleu sur la Figure 1) et les connaissances explicites (en rouge sur la Figure 1).

Il existe actuellement deux façons principales de traiter les données pour la gestion des connaissances.

  • Via des modèles neuronaux, basés principalement sur les statistiques, pour l’aide à la décision, la compréhension automatique et la génération de données.
  • Via des modèles symboliques, basés sur la logique et la sémantique, pour l’aide à la décision et la recherche avancée.

Ces deux approches sont généralement distinctes et correspondent à deux cultures d’ingénieurs différentes. En raison de leurs avantages et de leurs inconvénients, les gens essaient de les combiner.

Clarifions maintenant la différence entre les modèles ” neuronaux ” et ” symboliques ” et comparons-les à la cognition neuronale et symbolique chez les êtres humains.

Le grand avantage des modèles neuronaux est leur capacité à synthétiser et à mobiliser la mémoire numérique “juste à temps”, ou “à la demande”, et à le faire automatiquement, ce qui est impossible pour un cerveau humain. Mais leur processus de reconnaissance et de génération de données est statistique, ce qui signifie qu’ils ne peuvent pas organiser un monde, ils ne maîtrisent pas la conservation des objets, ils n’ont pas de compréhension du temps et de la causalité, ou de l’espace et de la géométrie. Ils ne peuvent pas toujours reconnaître les transformations d’images d’un même objet comme le font les êtres vivants.

En revanche, les neurones vivants peuvent faire des choses que les neurones formels actuels ne peuvent pas faire. Les animaux, même sans modèles symboliques, avec leurs neurones naturels, sont capables de modéliser le monde, d’utiliser des concepts, ils conservent les objets malgré leurs transformations, ils appréhendent le temps, la causalité, l’espace, etc. Et les cerveaux humains ont la capacité de faire fonctionner des systèmes symboliques, comme le langage.

Quels sont les aspects positifs des modèles symboliques de l’IA, ou graphes de connaissances? 

  • Il s’agit de modèles explicites du monde, plus précisément d’un monde pratique local. 
  • Ils sont en principe auto-explicatifs, si le modèle n’est pas trop complexe.
  • ils ont de fortes capacités de raisonnement. 

Tout cela les rend plutôt fiables, comparativement aux modèles neuronaux, qui sont probabilistes. Cependant, les modèles symboliques actuels présentent deux faiblesses.

  • Leur conception prend du temps. Ils sont coûteux en termes de main-d’œuvre spécialisée.
  • Ils n’ont ni “conservation des concepts” ni  “conservation des relations” entre les ontologies ou domaines. Dans un domaine particulier donné, chaque concept et chaque relation doivent être définis logiquement un par un.

S’il existe une interopérabilité au niveau des formats de fichiers pour les métadonnées sémantiques (ou les systèmes de classification), cette interopérabilité n’existe pas au niveau sémantique des concepts, ce qui cloisonne les graphes de connaissances, et par conséquent l’intelligence collective.

En revanche, dans la vie réelle, des humains issus de métiers ou de domaines de connaissances différents se comprennent en partageant la même langue naturelle. En effet, dans la cognition humaine, un concept est déterminé par un réseau de relations inhérent aux langues naturelles.

Mais qu’est-ce que j’entends par “le sens d’un concept est déterminé par un réseau de relations inhérent aux langues naturelles” ? Quel est ce réseau de relations ? Et pourquoi est-ce que je le souligne dans cet article ? Parce que je crois que l’IA symbolique actuelle passe à côté de l’aspect sémantique des langues. Faisons donc un peu de linguistique pour mieux comprendre.

Figure 2

Toute langue naturelle tisse trois types de relations : l’interdéfinition, la composition et la substitution.

  • Tout d’abord, le sens de chaque mot est défini par une phrase qui implique d’autres mots, eux-mêmes définis de la même manière. Un dictionnaire englobe notamment une inter-définition circulaire ou enchevêtrée de concepts.
  • Ensuite, grâce aux règles de grammaire, on peut composer des phrases originales et comprendre de nouveaux sens.
  • Enfin, tous les mots d’une phrase ne peuvent pas être remplacés par n’importe quel autre ; il existe des règles pour les substitutions possibles qui contribuent au sens des mots et des phrases.

Vous comprenez la phrase “Je peins la petite pièce en bleu” (voir Figure 2) parce que vous connaissez les définitions de chaque mot, vous connaissez les règles grammaticales qui donnent à chaque mot son rôle dans la phrase, et vous savez par quoi les mots actuels pourraient être remplacés. C’est ce qu’on appelle la sémantique linguistique.

Il n’est pas nécessaire de définir une à une ces relations d’inter-définition, de composition et de substitution entre concepts chaque fois que l’on parle de quelque chose. Tout cela est inclus dans la langue. Malheureusement, nous ne disposons d’aucune de ces fonctions sémantiques lorsque nous construisons les graphes de connaissances actuels. Et c’est là qu’IEML pourrait contribuer à améliorer les méthodes de l’IA symbolique et de la gestion des connaissances.

Pour comprendre mon argumentation, il est important de faire la distinction entre la sémantique linguistique et la sémantique référentielle. La sémantique linguistique concerne les relations entre les concepts. La sémantique référentielle concerne les relations entre les propositions et les états de choses ou entre les noms propres et les individus.

Si la sémantique linguistique tisse des relations entre les concepts, pourquoi ne pouvons-nous pas utiliser les langues naturelles dans les modèles symboliques ? Nous connaissons tous la réponse. Les langues naturelles sont ambiguës (grammaticalement et lexicalement) et les machines ne peuvent pas désambiguïser le sens en fonction du contexte. Dans l’IA symbolique actuelle, nous ne pouvons pas compter sur le langage naturel pour susciter organiquement des relations sémantiques.

Alors, comment construit-on un modèle symbolique aujourd’hui ?

  • Pour définir les concepts, nous devons les relier à des URI (Uniform Resource Identifier) ou à des pages web, selon le modèle de la sémantique référentielle.
  • Mais comme la sémantique référentielle est insuffisante pour décrire un réseau de relations, au lieu de s’appuyer sur la sémantique linguistique, il faut imposer des relations sémantiques aux concepts un par un.

C’est la raison pour laquelle la conception des graphes de connaissances prend tant de temps et c’est aussi pourquoi il n’existe pas d’interopérabilité sémantique générale des graphes de connaissances entre les ontologies ou les domaines de connaissance. Encore une fois, je parle ici d’interopérabilité au niveau sémantique ou conceptuel et non au niveau du format.

Afin de pallier les insuffisances des modèles symboliques actuels, j’ai construit un métalangage qui présente les mêmes avantages que les langues naturelles, à savoir un mécanisme inhérent de construction de réseaux sémantiques, mais qui n’a pas leurs inconvénients, puisqu’il est sans ambiguïté et calculable.

IEML (le méta-langage de l’économie de l’information), est un métalangage sémantique non ambigu et calculable qui inclut un système d’inter-définition, de composition et de substitution de concepts.

L’objectif de cette invention est de faciliter la conception de graphes de connaissances et d’ontologies, d’assurer leur interopérabilité sémantique et de favoriser leur conception collaborative. La vision qui inspire IEML est une intelligence collective à support numérique et augmentée par l’IA.

IEML a le pouvoir d’expression d’un langage naturel et possède une structure algébrique qui lui permet d’être entièrement calculable. IEML n’est pas seulement calculable dans sa dimension syntaxique, mais aussi dans sa dimension sémantique linguistique, car ses relations sémantiques (en particulier les relations de composition et de substitution) sont des fonctions calculables de ses relations syntaxiques. Il n’existe aujourd’hui aucun autre système symbolique ayant ces propriétés.

IEML dispose d’une grammaire entièrement régulière et récursive ainsi que d’un dictionnaire de trois mille mots organisés en paradigmes (systèmes de substitution) permettant la construction (récursive et grammaticale) de n’importe quel concept. En somme, tout concept peut être construit à partir d’un petit nombre de briques lexicales selon des règles de composition universelles simples.

Comme chaque concept est automatiquement défini par des relations de composition et de substitution avec d’autres concepts et par des explications impliquant les concepts de base du dictionnaire et conformes à la grammaire IEML, IEML est son propre métalangage. Il peut traduire n’importe quelle langue naturelle. Le dictionnaire en IEML est actuellement traduit en français et en anglais.

 IEML permet de coupler les modèles symboliques et neuronaux, et de surmonter leurs limitations et séparations dans une architecture innovante et intégrée.

Figure 3

La diapositive ci-dessus (Figure 3) présente la nouvelle architecture sémantique pour la gestion des connaissances qu’IEML rend possible, une architecture qui conjoint les modèles neuronaux et symboliques.

La seule chose qui puisse générer tous les concepts dont nous avons besoin pour exprimer la complexité des domaines de connaissance, tout en maintenant la compréhension mutuelle, est une langue. Mais les langues naturelles sont irrégulières et ambiguës, et leur sémantique ne peut être calculée. IEML étant un langage algébrique univoque et formel (contrairement aux langues naturelles), il peut exprimer tous les concepts possibles (comme dans les langues naturelles), et ses relations sémantiques sont densément tissées grâce à un mécanisme intégré. C’est pourquoi nous pouvons utiliser IEML comme un langage de métadonnées sémantiques pratique pour exprimer n’importe quel modèle symbolique ET nous pouvons le faire de manière interopérable. Encore une fois, je parle d’interopérabilité conceptuelle. En IEML, tous les modèles symboliques peuvent échanger des modules de connaissance et le raisonnement transversal aux ontologies devient la norme.

Comment les modèles neuronaux sont-ils utilisés dans cette nouvelle architecture ? Les modèles neuronaux traduisent automatiquement le langage naturel en IEML, donc pas de travail ou d’apprentissage supplémentaire pour le profane. Ils pourraient même aider à traduire des descriptions informelles en langage naturel en un modèle formel exprimé en IEML.

Les consignes (prompts) seraient exprimées en IEML en coulisse, de sorte que la génération de données soit mieux contrôlée.

Nous pourrions également utiliser des modèles neuronaux pour classer ou étiqueter automatiquement des données en IEML. Les étiquettes exprimées en IEML permettront un apprentissage automatique plus efficace, car les unités ou “tokens” pris en compte ne seraient plus des unités sonores – caractères, syllabes, mots – des langues naturelles, mais des concepts générés par une algèbre sémantique.

Quels seraient les avantages d’une architecture intégrée de gestion des connaissances utilisant IEML comme système de coordonnées sémantiques ?

  • Les modèles symboliques et neuronaux fonctionneraient ensemble au profit de la gestion des connaissances.
  • Un système de coordonnées sémantiques commun faciliterait la mutualisation des modèles et des données. Les modèles symboliques seraient interopérables et plus faciles à concevoir et à formaliser. Leur conception serait collaborative, y compris d’un domaine à l’autre. L’usage d’un métalangage sémantique comme IEML amélioreraient également la productivité intellectuelle grâce à une automatisation partielle de la conceptualisation.
  • Les modèles neuronaux seraient basés sur des étiquettes codées en IEML et donc plus transparents, explicables et fiables. L’avantage serait non seulement technique, mais aussi d’ordre éthique.
  • Enfin, cette architecture favoriserait la diversité et la liberté de création, puisque les réseaux de concepts, ou graphes de connaissances, formulés en IEML peuvent être différenciés et complexifiés à volonté.

RÉFÉRENCES POUR IEML

Scientific paper (English) in Collective Intelligence Journal,2023 https://journals.sagepub.com/doi/full/10.1177/26339137231207634

Article scientifique (Français) in Humanités numériques, 2023 https://journals.openedition.org/revuehn/3836

Website / site web: https://intlekt.io/

Book: The Semantic Sphere, Computation, Cognition and Information Economy. Wiley, 2011

Livre: La Sphère sémantique. Computation, cognition, économie de l’information. Lavoisier, 2011

Première réflexion au sujet d’un IEML_GPT à venir.

Rappel : ” Je travaille dans une perspective d’intelligence artificielle dédiée à l’augmentation de l’intelligence collective. J’ai conçu IEML pour servir de protocole sémantique, permettant la communication des significations et des connaissances dans la mémoire numérique, tout en optimisant l’apprentissage automatique et le raisonnement automatique.”

Pour tout savoir sur IEML, l’article scientifique définitif : https://journals.sagepub.com/doi/10.1177/26339137231207634

L’article scientifique sur IEML en français:
https://journals.openedition.org/revuehn/3836

Au sujet du GPT Builder : https://help.openai.com/en/articles/8554397-creating-a-gpt

Le Dictionnaire d’IEML

La Grammaire d’IEML

VISION

Imaginons un dispositif destiné au partage des connaissances et qui tire le maximum des possibilités techniques contemporaines. Au cœur de ce dispositif évolue un écosystème ouvert de bases de connaissances catégorisées en IEML, qui émergent d’une multitude de communautés de recherche et de pratique. Entre ce noyau de bases de connaissances interopérables et les utilisateurs humains vivants s’interpose une interface neuronale (un écosystème de modèles) « no code » qui donne accès au contrôle, à l’alimentation, à l’exploration et à l’analyse des données. Tout se passe de manière intuitive et directe, selon les modalités sensorimotrices sélectionnées. C’est aussi par l’intermédiaire de ce giga-perceptron – un métavers immersif, social et génératif – que les collectifs échangent et discutent les modèles de données et réseaux sémantiques qui organisent leurs mémoires. En bonne gestion des connaissances, le nouveau dispositif de partage des savoirs favorise l’enregistrement des créations, accompagne les parcours d’apprentissage et présente les informations utiles aux acteurs engagés dans leurs pratiques. Le modèle IEML_GPT évoqué ici se veut un premier pas dans cette direction.

Maintenant que l’IA a été déchaînée sur Internet et qu’elle se couple aux médias sociaux, il nous faut apprivoiser et harnacher le monstre. Comment rendre l’IA raisonnable? Comment faire en sorte qu’elle « comprenne » ce qu’on lui dit et ce qu’elle nous dit, plutôt que de seulement calculer les probabilités d’apparition des mots à partir des données d’entraînement? Il faudrait lui apprendre le sens des mots et des phrases de telle sorte qu’elle (l’IA) se fasse une représentation abstraite *compréhensible pour elle* non seulement du monde physique (je laisse la tâche à Yann LeCun), mais aussi une représentation du monde humain et, plus généralement, du monde des idées.

En d’autres termes, comment greffer des capacités de codage et décodage symbolique sur un modèle neuronal qui ne peut au départ que reconnaître et générer des formes sensibles ou des agrégats de signifiants? Ce défi rappelle le processus de l’hominisation – quand des réseaux de neurones biologiques sont devenus capables de manipuler des systèmes symboliques – ce qui n’est pas pour me déplaire.

COMPRÉHENSION / CONNAISSANCE / INTEROPÉRABILITÉ

Comprendre une phrase, c’est l’inclure dans la dynamique auto-définitionnelle d’une langue, et cela avant même de saisir la référence extralinguistique de la phrase. L’IA comprendra ce qu’on lui dit lorsqu’elle sera capable de transformer automatiquement une chaîne de caractères en un réseau sémantique qui plonge dans la boucle auto-référentielle et auto-définitoire d’une langue. Le dictionnaire d’une langue, avec ses définitions, est un élément crucial de cette boucle. De même qu’une déduction représente en fin de compte une tautologie logique, le dictionnaire d’une langue exhibe une *tautologie sémantique*. C’est pourquoi IEML_GPT doit contenir un fichier avec le dictionnaire IEML-français-anglais (et peut-être d’autres langues) avec l’ensemble des relations entre les mots sous forme de phrases IEML. Le dictionnaire est une méta-ontologie qui est la même pour tous les utilisateurs. D’autres fichiers pourront contenir des modèles locaux ou ontologies correspondant aux écosystèmes de pratiques des communautés d’utilisateurs.
1) Compréhension linguistique. Les agents raisonnables sont capables de reconnaître et de générer des séquences de caractères IEML syntaxiquement valides, notamment au moyen d’un parseur. Ils ont une compréhension d’IEML : ils reconstituent les arbres syntagmatiques récursivement enchâssés et les relations entre concepts qui découlent du dictionnaire et des matrices paradigmatiques (ou groupes de substitution) qui organisent les concepts. Chaque concept (représenté par un mot ou une phrase IEML) se trouve ainsi au centre d’une étoile de relations syntaxiques et sémantiques.  
2) Connaissance des domaines pratiques. Les agents raisonnables sont animés par des bases de connaissances qui leur permettent de comprendre (localement) le monde où ils sont amenés à intervenir. Ils disposent de modèles (ontologies ou graphes de connaissances en IEML) des situations pratiques auxquelles leurs utilisateurs sont confrontés. Ils sont capables de raisonner à partir de ces modèles. Ils sont capables de rapporter les données qu’ils acquièrent et les questions qu’on leur pose à ces modèles.
3) Interopérabilité sémantique. Les agents raisonnables partagent la même langue (IEML) et donc se comprennent entre eux. Ils peuvent s’échanger des modèles ou des sous-modèles. Ils transforment les expressions en langues naturelles en IEML et les expressions IEML en langues naturelles : ils peuvent donc comprendre les humains et se faire comprendre d’eux.

TÂCHE 1 : LE DICTIONNAIRE

1.0 Je dispose déjà d’environ trois mille mots du dictionnaire organisés en paradigmes, d’une grammaire formelle, d’un parseur pour valider les phrases et de fonctions pour générer des paradigmes.

1.1 La première étape consiste à créer des concepts-phrases pour exprimer les *ensembles de mots* (familles lexicales et champs sémantiques) que sont les paradigmes, leurs colonnes, leurs rangées, etc. Appelons les concepts définissant ces ensembles de mots des « concepts lexicaux ». Les mots d’une même famille lexicale ont des traits syntaxiques communs et appartiennent souvent aux mêmes paradigmes-racines. Ils devront être créés systématiquement au moyen de paradigmes.

Il me faut trouver les moyens de générer les paradigmes de concepts lexicaux automatiquement en langue naturelle avec IEML_GPT plutôt qu’au moyen de l’éditeur actuel qui n’est pas facile à utiliser.

1.2 La seconde étape consiste à créer toutes les « propositions analytiques » qui définissent les mots du dictionnaire et explicitent leurs relations au moyen de mots et de concepts lexicaux. Par exemple : « Une montagne est plus grande qu’une colline » ; « La sociologie appartient aux sciences humaines ». Les propositions analytiques de ce type sont toujours vraies et définissent une méta-ontologie. Il faudra donc créer les paradigmes des *relations du dictionnaire*. Et les faire générer par IEML_GPT à partir d’instructions en langues naturelles.

1.3 Toutes les relations internes au dictionnaire, matérialisées par des liens hypertextes, sont créés par des phrases. Sur le plan de l’interface utilisateur, cela revient à créer des liens hypertexte internes au dictionnaire (entre les mots et les concepts lexicaux) de telle sorte que leurs relations grammaticales soient les plus claires possibles. Le document dictionnaire-hypertexte doit également être généré automatiquement par IEML_GPT.

Pour chaque mot, on obtiendra une liste (une « page? ») de phrases justes contenant le mot. Cette liste sera organisée par rôle grammatical : mot défini en rôle de racine, mot défini en rôle d’objet, etc.

Ces phrases serviront non seulement à définir les mots, mais aussi à commencer à accumuler des exemples, voire des données d’entraînement, avec la correspondance entre phrases IEML formelles et traductions littéraires en français et en anglais. En somme, le premier produit fini sera un dictionnaire complet, avec mots, concepts lexicaux et relations d’inter-définition sous forme hypertextuelle, le tout en IEML, anglais et français.

TÂCHE 2 : L’ÉDITEUR D’ONTOLOGIES

La tâche 1 aura permis de tester les meilleurs moyens de créer des paradigmes au moyen de consignes en langues naturelles, voire au moyen de formulaires permettant de mâcher le travail des concepteurs d’ontologies.

L’output de l’éditeur d’ontologie pourra être en RDF, JSON-LD, ou sous forme d’un document hypertexte. On peut aussi imaginer un document multimédia interactif : tables, arbres, réseaux de concepts explorables, illustrations verbales/sonores…

Idéalement, l’ontologie créée devrait contenir nativement un moteur d’inférence et donc supporter le raisonnement automatique. La propriété intellectuelle des créateurs d’ontologies devra être reconnue.

IEML_GPT sera capable de faire fonctionner n’importe quelle ontologie ou ensemble d’ontologies IEML.

TÂCHE 3 LA CATÉGORISATION AUTOMATIQUE

L’étape suivante devra viser la construction d’un outil intégré de catégorisation automatique de données en IEML. On donne à l’IA un jeu de données et une ontologie IEML (idéalement sous forme de fichier de référence) et le résultat est un ensemble de données catégorisées selon les termes de l’ontologie. L’exécution de la tâche 3 ouvre la voie à la création d’un écosystème de bases de connaissances tel que décrit dans la vision plus haut et la figure ci-dessous.

Toutes ces étapes devront être d’abord réalisées « en petit » (preuves de concepts et méthode agile) avant de l’être intégralement.

Cette entrée de blog propose le texte de ma conférence d’ouverture du Forum “Montréal Connecte” d’octobre 2023 consacré à l’intelligence collective à support numérique. Pour ceux qui préfèrent la vidéo, elle est là (ça commence à la vingtième minute) : https://www.youtube.com/watch?v=dTMU-j8nYio&t=7s

INTRODUCTION

Il y a maintenant presque 30 ans j’ai publié un livre consacré à l’intelligence collective à support numérique qui était, modestie à part, le premier à traiter ce sujet. Dans cet ouvrage, je prévoyais que l’Internet allait devenir le principal medium de communication, que cela provoquerait un changement de civilisation, et je disais que le meilleur usage que nous pouvions faire des technologies numériques était d’augmenter l’intelligence collective (et j’ajoute : une intelligence collective émergente, de type “bottom up”).

Le public de ma conférence d’ouverture à “Montreal Connecte” le 10 octobre 2023

A cette époque moins de 1% de l’humanité était branchée sur l’Internet alors que nous avons aujourd’hui – en 2023 – dépassé les deux tiers de la population mondiale connectée. Le changement de civilisation semble assez évident, bien qu’il faille attendre normalement plusieurs générations pour confirmer ce type de mutation, sans oublier que nous ne sommes qu’au commencement de la révolution numérique. Quant à l’augmentation de l’intelligence collective, de nombreux pas ont été franchis pour mettre les connaissances à la portée de tous (Wikipédia, le logiciel libre, les bibliothèques et les musées numérisés, les articles scientifiques en accès libre, certains aspects des médias sociaux, etc.). Mais beaucoup reste à faire. Utiliser l’intelligence artificielle pour augmenter l’intelligence collective semble une voie prometteuse, mais comment avancer dans cette direction ? Pour répondre à cette question de manière rigoureuse, je vais devoir définir préalablement quelques concepts.

QU’EST-CE QUE L’INTELLIGENCE?

Avant même de traiter la relation entre l’intelligence collective humaine et l’intelligence artificielle, essayons de définir en quelques mots l’intelligence en général et l’intelligence humaine en particulier. On dit souvent que l’intelligence est la capacité de résoudre des problèmes. A quoi je réponds: oui, mais c’est aussi et surtout la capacité de concevoir ou de construire des problèmes. Or si l’on a un problème c’est que l’on essaye d’obtenir un certain résultat et que l’on est confronté à une difficulté ou à un obstacle. Autrement dit, il y a un soi, un même, qu’on appellera l’« Un », qui est pourvu d’une logique interne, qui doit se maintenir dans certaines limites homéostatiques, qui a des finalités immanentes comme la reproduction, l’alimentation ou le développement et il y a un « Autre », une extériorité, qui obéit à une logique différente, qui se confond avec l’environnement ou qui appartient à l’environnement de l’Un et avec qui l’Un doit transiger. L’entité intelligente doit avoir une certaine autonomie, sinon elle ne serait pas intelligente du tout, mais cette autonomie n’est pas une autarcie ou une indépendance absolue car, dans ce cas, elle n’aurait aucun problème à résoudre et n’aurait pas besoin d’être intelligente.

Figure 1

Le rapport entre l’Un et l’Autre peut se ramener à une communication ou une interaction entre des entités qui sont régies par des manières d’être, des codes, des finalités hétérogènes et qui imposent donc un processus incertain et perfectible de codage et de décodage, processus qui engendre forcément des pertes, des créations et qui est soumis à toutes sortes de bruits et de parasitages.

L’entité intelligente n’est pas forcément un individu, ce peut être une société ou un écosystème. D’ailleurs, à l’analyse, on trouvera souvent à sa place un écosystème de molécules, de cellules, de neurones, de modules cognitifs, et ainsi de suite.  Quant au rapport entre l’Un et l’Autre, il constitue la maille élémentaire d’un réseau écosystémique quelconque. L’intelligence est le fait d’un écosystème en relation avec d’autres écosystèmes, elle est collective par nature. En somme le problème revient à optimiser la communication avec un Autre hétérogène en fonction des finalités de l’Un et la solution n’est autre que l’histoire effective de leurs relations.

LES  COUCHES DE COMPLEXITÉ DE L’INTELLIGENCE

Nous nous interrogeons principalement sur l’intelligence humaine augmentée par le numérique. N’oublions pas, cependant que notre intelligence repose sur des couches de complexité bien antérieures à l’apparition de l’espèce Homo sur la Terre. Les couches de complexité organique et animale sont toujours actives et indispensables à notre propre intelligence puisque nous sommes des êtres vivants pourvus d’un organisme et des animaux pourvus d’un système nerveux. C’est d’ailleurs pourquoi l’intelligence humaine est toujours incarnée et située.

Figure 2

Avec les organismes, viennent les propriétés bien connues d’autoreproduction, d’auto-référence et d’auto-réparation qui s’appuient sur une communication moléculaire et sans doute aussi des formes de communication électromagnétique complexe. Je ne développerai pas ici le thème de l’intelligence organique. Qu’il suffise de signaler que certains chercheurs en biologie et en écologie parlent désormais d’une “cognition végétale”.

Le développement du système nerveux découle des nécessités de la locomotion. Il s’agit d’abord d’assurer la boucle sensori-motrice. Au cours de l’évolution, cette boucle réflexe s’est complexifiée en simulation de l’environnement, évaluation de la situation et calcul décisionnel menant à l’action. L’intelligence animale résulte d’un pli de l’intelligence organique sur elle-même puisque le système nerveux cartographie et synthétise ce qui se passe dans l’organisme et le contrôle en retour. L’expérience phénoménale naît de cette réflexion.

En effet, le système nerveux produit une expérience phénoménale, ou conscience, qui se caractérise par l’intentionnalité, à savoir le fait de se rapporter à quelque chose qui n’est pas forcément l’animal lui-même. L’intelligence animale se représente l’autre. Elle est habitée par des images sensorielles multimodales (cénesthésie, toucher, goût, odorat, audition, vue), le plaisir et la douleur, les émotions, le cadrage spatio-temporel indispensable à la locomotion, le rapport à un territoire, une communication sociale souvent complexe. Il est clair que les animaux sont capables de reconnaître des proies, des prédateurs ou des partenaires sexuels et d’agir en conséquence. Ceci n’est possible que parce que des circuits neuronaux codent des schémas d’interaction ou concepts qui orientent, coordonnent et donnent sens à l’expérience phénoménale.

L’INTELLIGENCE HUMAINE

Je viens d’évoquer l’intelligence animale, qui repose sur le système nerveux. Comment caractériser l’intelligence humaine, supportée par le codage symbolique ? Les catégories générales, concepts et schémas d’interaction qui étaient simplement codés par des circuits neuronaux dans l’intelligence animale sont maintenant aussi représentés dans l’expérience phénoménale par l’intermédiaire des systèmes symboliques, dont le plus important est le langage. Des images signifiantes (paroles, écrits, représentations visuelles, gestes rituels…) représentent des concepts abstraits et ces concepts peuvent se combiner syntaxiquement pour former des architectures sémantiques complexes.

Figure 3

Dès lors, la plupart des dimensions de l’expérience phénoménale humaine  – y compris la sensori-motricité, l’affectivité, la spatio-temporalité et la mémoire – se projettent sur les systèmes symboliques et sont contrôlées en retour par la pensée symbolique. L’intelligence et la conscience humaines sont réflexives. En outre, pour que se forme cette pensée symbolique, il faut que des systèmes symboliques, qui sont toujours d’origine sociale, soient internalisés par les individus, deviennent partie intégrante de leur psychisme et s’inscrivent “en dur” dans leurs systèmes nerveux. Il en résulte que la communication symbolique embraye directement sur les systèmes nerveux humains. Nous ne pouvons pas ne pas comprendre ce que dit quelqu’un si nous connaissons la langue. Et les effets sur nos émotions et nos représentations mentales sont quasi inévitables. On pourrait également prendre l’exemple de la synchronisation psycho-physique et affective produite par la musique. C’est pourquoi la cohésion sociale humaine est au moins aussi forte que celle des animaux eusociaux comme les abeilles et les fourmis.

On remarquera que la figure 3, comme plusieurs des figures qui vont suivre, évoque un partage et une interdépendance entre virtuel et actuel. En 1995, j’ai publié un livre sur le virtuel qui était à la fois une méditation philosophique et anthropologique sur le concept de virtualité et un essai de mise au travail de ce concept sur des objets contemporains. Ma thèse philosophique est simple : ce qui n’est que possible, mais non réalisé, n’existe pas. Par contraste, ce qui n’est que virtuel mais non actualisé existe. Le virtuel, ce qui est en puissance, abstrait, immatériel, informationnel ou idéal pèse sur les situations, conditionne nos choix, provoque des effets et entre dans une dialectique ou dans un rapport d’interdépendance avec l’actuel.

L’ÉCOSYSTÈME DE L’INTELLIGENCE COLLECTIVE

La figure 4 ci-dessous cartographie les principaux pôles de l’intelligence collective humaine ou, si l’on préfère, la culture qui vient avec la pensée symbolique. Le diagramme est organisé par deux symétries qui se croisent. La première symétrie – binaire – est celle du virtuel et de l’actuel. L’actuel est plongé dans l’espace et le temps, il est plutôt concret alors que le virtuel est plutôt abstrait et n’a pas d’adresse spatio-temporelle. La seconde symétrie – ternaire –  est celle du signe de l’être et de la chose, qui est inspiré du triangle sémiotique. La chose est ce que représente le signe et l’être est le sujet pour qui le signe représente la chose. A gauche (signe) se tiennent les systèmes symboliques, le savoir et la communication ; au milieu (être) se dressent la subjectivité, l’éthique et la société ; à droite (chose) s’étendent la capacité de faire, l’économie, la technique, la dimension physique. Il s’agit bien d’intelligence collective parce que les six sommets de l’hexagone sont interdépendants: les lignes vertes (les relations) sont aussi importantes, sinon plus, que les points où elles aboutissent.

Figure 4

Cette grille de lecture est valable pour la société en général mais également pour n’importe quelle communauté particulière. Au passage, virtuel, actuel, signe, être et chose sont (avec le vide) les primitives sémantiques du langage IEML (Information Economy MetaLanguage) que j’ai inventé et dont je dirai quelques mots plus bas.

Les six sommets de l’hexagone ne sont pas seulement les principaux points d’appui de l’intelligence collective humaine, ce sont aussi des univers de problèmes à résoudre:

  • problèmes de création de connaissance et d’apprentissage
  • problèmes de communication
  • problèmes de législation et d’éthique
  • problèmes sociaux et politiques
  • problèmes économiques
  • problèmes techniques, problèmes de santé et d’environnement.

Comment résoudre ces problèmes?

LE CYCLE AUTO-ORGANISATEUR DE L’INTELLIGENCE COLLECTIVE

La Figure 5 ci-dessous représente un cycle de résolution de problème en quatre étapes. Pour chacune des quatre phases du cycle (délibération, décision, action et observation), il existe un grand nombre de procédures différentes selon les traditions et les contextes où opère l’intelligence collective. Vous remarquerez que la délibération représente la phase virtuelle du cycle alors que l’action en représente la phase actuelle. Dans ce modèle, la décision fait la transition entre le virtuel et l’actuel tandis que l’observation passe de l’actuel au virtuel. Je voudrais insister ici sur deux concepts, la délibération et la mémoire, auxquels il arrive qu’on ne prête pas assez attention dans ce contexte.

Figure 5

Soulignons d’abord l’importance de la délibération, qui ne consiste pas seulement à discuter des meilleures solutions pour surmonter les obstacles mais aussi à construire et conceptualiser les problèmes de manière collaborative. Cette phase de conceptualisation va fortement impacter et même définir une bonne part des phases suivantes, elle va aussi déterminer l’organisation de la mémoire.

En effet, vous voyez sur le diagramme de la Figure 5 que la mémoire se trouve au centre du processus d’auto-organisation de l’intelligence collective. La mémoire partagée vient en appui de chacune des phases du cycle et contribue au maintien de la coordination, de la cohérence et de l’identité de l’intelligence collective. La communication indirecte par l’intermédiaire d’un environnement partagé est l’un des principaux mécanismes qui sous-tend l’intelligence collective des sociétés d’insectes, que l’on appelle la communication stigmergique dans le vocabulaire des éthologues. Mais alors que les insectes laissent généralement des traces de phéromones dans leurs environnements physiques pour guider l’action de leurs congénères, nous laissons des traces symboliques et cela non seulement dans le paysage mais aussi dans des dispositifs de mémoire spécialisés comme les archives, les bibliothèques et aujourd’hui les bases de données. Le problème de l’avenir de la mémoire numérique est devant nous : comment concevoir cette mémoire de telle sorte qu’elle soit la plus utile possible à notre intelligence collective?

VERS UNE INTELLIGENCE ARTIFICIELLE AU SERVICE DE L’INTELLIGENCE COLLECTIVE

Ayant acquis quelques notions de l’intelligence en général, des fondements de l’intelligence humaine et de la complexité de notre intelligence collective, nous pouvons maintenant nous interroger sur la relation de notre intelligence avec les machines.

Figure 6

La figure 6 propose une vue d’ensemble de notre situation. Au milieu, le « vivant » : les populations humaines, avec les corps actuels et les esprits virtuels des individus. Immédiatement au contact des individus, les machines matérielles (ou corps mécanique) du côté actuel et, du côté virtuel, les machines logicielles (ou esprit mécanique). Les machines matérielles jouent de plus en plus un rôle d’interface ou de medium entre nous et les écosystèmes terrestres. Quant aux machines logicielles, elles sont en train de devenir le principal intermédiaire – un médium encore une fois – entre les populations humaines et les écosystèmes d’idées avec lesquelles nous vivons en symbiose. Quant à la conscience collective, nous n’y sommes pas encore. Elle représente plus un horizon, une direction d’évolution à viser qu’une réalité. Il faut comprendre la Figure 6 en y ajoutant mentalement des boucles de rétroaction ou d’interdépendance entre les couches adjacentes, entre le virtuel et l’actuel, entre le mécanique et le vivant. Sur un plan éthique, on peut faire l’hypothèse que les collectivités humaines vivantes reçoivent les bienfaits des écosystèmes terrestres et des écosystèmes d’idées en proportion du travail et du soin qu’elles apportent à leur entretien.

L’AUTOMATISATION DE L’INTELLIGENCE

Effectuons un zoom avant sur notre environnement mécanique avec la Figure 7. Une machine est un dispositif technique construit par les humains, un automate qui bouge ou fonctionne “tout seul”. Aujourd’hui les deux types de machines – logicielles et matérielles – sont interdépendantes. Elles ne pourraient pas exister l’une sans l’autre et elles sont en principe contrôlées par les collectivités humaines dont elles augmentent les capacités physiques et mentales. Parce que la technique externalise, socialise et réifie les fonctions organiques et psychiques humaines elle peut parfois paraître autonome ou à risque de s’autonomiser, mais c’est une illusion d’optique. Derrière “la machine” il faut entrevoir l’intelligence collective et les rapports sociaux qu’elle réifie et mobilise.

Figure 7

Les machines mécaniques sont celles qui transforment le mouvement, à commencer par la voile, la roue, la poulie, le levier, les engrenages, les ressorts, etc. Citons comme exemples de machines purement mécaniques les moulins à eau ou à vent, les horloges classiques, les presses à imprimer de la Renaissance ou les premiers métiers à tisser.

Les machines énergétiques sont celles qui transforment l’énergie en impliquant de la chaleur ou de l’électricité. Citons les fours, les forges, les machines à vapeur, les moteurs à explosion, les moteurs électriques, et les procédés contemporains pour produire, transmettre et stocker l’électricité.

Quand aux machines électroniques, elles contrôlent l’énergie et la matière au niveau des champs électromagnétiques et des particules élémentaires et servent bien souvent à contrôler les machines de couches inférieures dont, par ailleurs, elles dépendent. Pour ce qui nous intéresse ici, ce sont principalement les centres de données (le “cloud”), les réseaux et les appareils qui sont directement au contact des utilisateurs finaux (le “edge”) tels qu’ordinateurs, téléphones, consoles de jeux, casques de réalité virtuelle et autres.

Abordons la partie virtuelle qui correspond à la mémoire partagée que nous avions mise au centre de notre description du cycle auto-organisateur de l’action collective. Si l’échange de messages point à point a toujours lieu, la majeure part de la communication sociale s’effectue désormais de manière stigmergique dans la mémoire numérique. Nous communiquons par l’intermédiaire de la masse océanique de données qui nous rassemble. Chaque lien que nous créons, chaque étiquette ou hashtag apposée sur une information, chaque acte d’évaluation ou d’approbation, chaque « j’aime », chaque requête, chaque achat, chaque commentaire, chaque partage, toutes ces opérations modifient subtilement la mémoire commune, c’est-à-dire le magma inextricable des rapports entre les données. Notre comportement en ligne émet un flux continuel de messages et d’indices qui transforment la structure de la mémoire, contribuent à orienter l’attention et l’activité de nos contemporains et entraîne les intelligences artificielles. Mais tout cela se fait aujourd’hui d’une manière plutôt opaque, qui ne rend pas justice à la nécessaire phase de délibération et de conceptualisation consciente qui serait celle d’une intelligence collective idéale.

La mémoire comprend avant tout les données qui sont produites, retrouvées, explorées et exploitées par l’activité humaine. Les interfaces Homme-Machine représentent le “front-end” sans lequel rien n’est possible. Elles déterminent directement ce qu’on appelle l’expérience de l’utilisateur. Entre les interfaces et les données, s’interposent principalement deux types de modèles d’intelligence artificielle, les modèles neuronaux et les modèles symboliques. Nous avons vu plus haut que l’intelligence humaine « naturelle » reposait notamment sur un codage neuronal et sur un codage symbolique. Or nous retrouvons ces deux types de codage, ou plutôt leur transposition électronique, à la couche de la mémoire numérique. Remarquons que ces deux approches, neuronale et symbolique, existaient déjà aux premiers temps de l’IA, dès le milieu du XXe siècle.

Les modèles neuronaux sont entraînés sur la multitude des données numériques disponibles et ils en extraient automatiquement des patterns de patterns qu’aucun programmeur humain n’aurait pu tirer au clair. Conditionnés par leur entraînement, les algorithmes peuvent alors reconnaître et produire des données correspondant aux formes apprises. Mais parce qu’ils ont abstrait des structures plutôt que de tout enregistrer, les voici capables de catégoriser correctement des formes (d’image, de texte, de musique, de code…) qu’ils n’ont jamais rencontrées et de produire une infinité d’arrangements symboliques nouveaux. C’est pourquoi l’on parle d’intelligence artificielle générative. L’IA neuronale synthétise et mobilise la mémoire commune. Bien loin d’être autonome, elle prolonge et amplifie l’intelligence collective qui a produit les données. Ajoutons que des millions d’utilisateurs contribuent au perfectionnement des modèles en leur posant des questions et en commentant les réponses qu’ils en reçoivent. On peut prendre l’exemple de Midjourney, dont les utilisateurs s’échangent leurs consignes (prompts) et améliorent constamment leurs compétences en IA. Les serveurs Discord de Midjourney sont aujourd’hui les plus populeux de la planète, avec plus d’un million d’utilisateurs. On commence à observer un phénomène semblable autour de DALLE 3. Une nouvelle intelligence collective stigmergique émerge de la fusion des médias sociaux, de l’IA et des communautés de créateurs. Ce sont des exemples d’une contribution consciente de l’intelligence collective humaine à des dispositifs d’intelligence artificielle.

De nombreux modèles pré-entraînés généralistes sont open-source et plusieurs méthodes sont aujourd’hui utilisées pour les raffiner ou les ajuster à des contextes particuliers, que ce soit à partir de consignes élaborées, d’un entraînement supplémentaire avec des données spéciales ou au moyen de feed-back humain, ou d’une combinaison de ces méthodes. En somme nous disposons aujourd’hui des premiers balbutiements d’une intelligence collective neuronale, qui émerge à partir d’un calcul statistique sur les données. Observons toutefois que les modèles neuronaux, aussi utiles et pratiques qu’ils soient, ne sont malheureusement pas des bases de connaissance fiables. Ils reflètent forcément l’opinion commune et les biais que charrient les données. Du fait de leur nature probabiliste, ils commettent toutes sortes d’erreurs. Enfin, ils ne savent pas justifier leur résultats et cette opacité n’est pas faite pour inciter à la confiance. L’esprit critique est donc plus que jamais nécessaire, surtout si les données d’entrainement sont de plus en plus produites par l’IA générative, ce qui crée un dangereux cercle vicieux épistémologique.

Intéressons-nous maintenant aux modèles symboliques. On les appelle de différents noms : collections de tags ou d’étiquettes, classifications, ontologies, graphes de connaissance ou réseaux sémantique. Ces modèles peuvent se ramener à des concepts explicites et à des relations tout aussi explicites entre ces concepts, y compris des relations causales. Ils permettent d’organiser les données sur un plan sémantique en fonction des besoins pratiques des communautés utilisatrices et ils autorisent le raisonnement automatique. Avec cette approche, on obtient des connaissances fiables, explicables, directement adaptées à l’usage que l’on vise. Les bases de connaissances symboliques sont de merveilleux moyens de partage des savoirs et des compétences, et donc d’excellents outils d’intelligence collective. Le problème vient de ce que les ontologies ou graphes de connaissances sont créées “à la main”. Or la modélisation formelle de domaines de connaissance complexes est difficile. La construction de ces modèles prend beaucoup de temps à des experts hautement spécialisés et coûte donc cher. La productivité de ce travail intellectuel est faible. D’autre part, s’il existe une interopérabilité au niveau des formats de fichiers pour les métadonnées sémantiques (ou systèmes de classification), cette interopérabilité n’existe pas au niveau proprement sémantique des concepts, ce qui cloisonne l’intelligence collective. On utilise Wikidata pour les applications encyclopédiques, schema.org pour les sites web, le modèle CIDOC-CRM pour les institutions culturelles, etc. Il existe des centaines d’ontologies incompatibles d’un domaine à l’autre et souvent même au sein d’un même domaine.

Cela fait des années que de nombreux chercheurs plaident en faveur de modèles hybrides neuro-symboliques afin de bénéficier des avantages des deux approches. Mon message est le suivant: si nous voulons avancer vers une intelligence collective à support numérique digne de ce nom et qui se tienne à la hauteur de nos possibilités techniques contemporaines, il nous faut :

  1. Renouveler l’IA symbolique en augmentant la productivité du travail de modélisation formelle et en décloisonnant les métadonnées sémantiques.
  2. Coupler cette IA symbolique renouvelée avec l’IA neuronale en plein développement.
  3. Mettre cette IA hybride encore inédite au service de l’intelligence collective.

IEML : VERS UNE BASE DE CONNAISSANCE SÉMANTIQUE

Nous avons automatisé et mutualisé la reconnaissance et la génération automatique de formes, qui est plutôt d’essence neuronale. Comment pouvons-nous automatiser et mutualiser la conceptualisation, qui est plutôt d’essence symbolique? Comment faire travailler ensemble la conceptualisation formelle par des êtres pensants et la reconnaissance de formes qui émerge des statistiques?

Figure 8

Parce que notre intelligence collective repose de plus en plus sur une mémoire numérique commune, cela fait trente ans que je cherche ce que pourrait être un système de coordonnées sémantiques pour la mémoire numérique, un système de métadonnées qui permettrait l’automatisation des opérations de conceptualisation et la mutualisation des modèles conceptuels.

Or la seule chose qui soit capable de générer tous les concepts que l’on voudra tout en maintenant la compréhension réciproque, c’est une langue. Mais les langues naturelles sont irrégulières, ambiguës et leur sémantique n’est pas calculable. J’ai donc construit une langue – IEML (Information Economy MetaLanguage) – dont les relations sémantiques internes sont des fonctions des relations syntaxiques. IEML est à la fois une langue et une algèbre. Cette langue est faite pour faciliter et automatiser autant que possible la construction de modèles symboliques tout en assurant leur interopérabilité sémantique. En somme c’est un outil permettant d’automatiser et de mutualiser la conceptualisation qui a vocation à servir de système de métadonnées sémantiques universel.

Nous pouvons maintenant répondre à notre question principale : comment utiliser l’intelligence artificielle pour augmenter l’intelligence collective? Il faut imaginer un écosystème de bases de connaissances sémantiques organisées selon l’architecture décrite sur la figure 8. Vous voyez qu’entre l’interface Homme-Machine et les données s’interposent trois couches. Au centre la couche des métadonnées sémantiques organise les données sur un plan symbolique et permet, grâce à sa structure algébrique, toutes sortes de calculs uniformes de type logique, analogique et sémantique. Nous savons que la modélisation symbolique est difficile et les éditeurs d’ontologies contemporains ne facilitent pas vraiment la tâche. C’est pourquoi, sous la couche des métadonnées je propose d’utiliser un modèle neuronal pour traduire les systèmes de signes naturels en IEML et vice versa ce qui favoriserait l’édition et l’inspection la plus intuitive possible des modèles sémantiques. Entre la couche des métadonnées et celle des données se trouve encore un modèle neuronal qui permettra la génération automatique de données à partir de consignes (prompts) en IEML. En sens inverse, le modèle neuronal effectuerait la classification automatique des données et leur intégration dans le modèle sémantique de la communauté utilisatrice. Notons que les propriétés algébriques d’IEML visent notamment un perfectionnement de l’apprentissage neuronal.

L’interface Homme-Machine immersive utilisant des signes naturels permettrait à tout un chacun de collaborer à la conceptualisation des modèles au niveau des métadonnées sémantiques et de générer les données appropriées au moyen de consignes (prompts) transparentes. Enfin, cette base de connaissance automatiserait la catégorisation, l’exploitation et l’exploration multimédia des données.

Une telle approche permettrait à chaque communauté de s’organiser selon son propre modèle sémantique tout en supportant la comparaison et l’échange de concepts et de sous-modèles. En somme, un écosystème de bases de connaissances sémantiques utilisant IEML maximiserait simultanément, (1) l’augmentation de la productivité intellectuelle par l’automatisation partielle de la conceptualisation, (2) la transparence des modèles et l’explicabilité des résultats, si importantes d’un point de vue éthique, (3) la mutualisation des modèles et des données grâce à un système de coordonnées sémantique commun, (4) la diversité et la liberté créative puisque les réseaux de concepts formulés en IEML peuvent se différentier et se complexifier à volonté. Un beau programme pour l’intelligence collective. J’appelle de mes vœux une mémoire numérique qui nous permettra de cultiver des écosystèmes d’idées divers, féconds et d’en récolter le maximum de fruits pour le développement humain.

Pierre Lévy lors de la conférence du 10 Octobre 2023. Photo: Luc Courchesne.

Prof. Pierre Lévy, PhD, MSRC

“Ce texte propose quelques réflexions philosophiques sur la relation triangulaire entre l’intelligence collective, l’intelligence artificielle et la noble finalité de mettre la connaissance à la portée de tous.

La valeur du savoir vérifié à l’heure de l’IA générative

Commençons par une citation de Denny Vrandečić, un des initiateurs de Wikidata, qui avait travaillé sur le graphe de connaissances de Google comme ontologiste et qui est aujourd’hui le chef de file du projet “Abstract Wikipedia”[1] visant à rendre les données des articles de Wikipédia indépendants des langues (c’est-à-dire traductibles dans toutes les langues). Denny a déclaré dans sa communication à la Knowledge Graph Conference de mai 2023[2]In a world of infinite content, knowledge becomes valuable”. Ce monde où les contenus sont potentiellement infinis résulte évidemment de l’usage désormais massif de l’intelligence artificielle générative. Parmi tous les problèmes que posent cette nouvelle situation, citons-en deux, particulièrement prégnants du point de vue de l’accès à la connaissance. Premièrement, malgré les usages qui sont faits des modèles génératifs pour obtenir rapidement des réponses directes, il faut réaffirmer que, contrairement à l’IA symbolique classique du XXe siècle, l’IA statistique (dite aussi neuronale) d’aujourd’hui – limitée à ses seules capacités – n’offre aucune garantie de vérité. GPT4 comme les autres modèles du même genre ne sont pas des bases de connaissances. Les erreurs de fait et de raisonnement sont nombreuses et il suffit d’être spécialiste d’un domaine pour constater les faiblesses de ces IA, comme nous le faisons d’habitude lorsque nous lisons un article portant sur un de nos domaines de compétence quand il est rédigé par un journaliste pressé qui se contente de reformuler la doxa dans laquelle il baigne. Les réponses – probabilistes – de Chat GPT sont seulement vraisemblables. Deuxièmement, comme les modèles d’IA générative sont entraînés sur les données du Web et que celles-ci sont de plus en plus rédigées et illustrées par les modèles en question, on se trouve en présence d’un dangereux cercle vicieux, et cela d’autant plus que les travailleurs au rabais chargés d’aligner les modèles et de redresser leurs biais ou erreurs utilisent eux-mêmes des IA génératives pour accomplir leur tâche![3] Pour s’extraire de ces sables mouvants épistémologiques, il est donc nécessaire d’investir plus que jamais dans la construction de sources d’information fiables. En d’autres termes, l’explosion des usages de l’IA générative, loin de nous dispenser d’alimenter et d’utiliser Wikipédia, Wikidata et d’autres bases de connaissances vérifiées, rend l’effort d’y contribuer et le plaisir de les consulter encore plus nécessaires! Ceci dit, comme nous le verrons par la suite, l’IA neuronale a néanmoins vocation à jouer un rôle positif dans le partage du savoir.

Ce texte propose quelques réflexions philosophiques sur la relation triangulaire entre l’intelligence collective, l’intelligence artificielle et la noble finalité de mettre la connaissance à la portée de tous.

L’intelligence collective

Étroitement définis comme des moyens de résoudre des problèmes, les processus d’intelligence collective[4] se présentent sous de multiples formes, dont les plus étudiées sont les espèces statistique, délibérative et stigmergique[5].

Au début du XXe siècle, en Angleterre, le savant Francis Galton visitait une foire agricole. Un concours avait été organisé: on demandait aux huit cents participants, la plupart éleveurs, de deviner le poids d’un bœuf. Mais aucun d’eux n’avait trouvé le poids exact. Galton fit la moyenne de toutes les évaluations et trouva qu’elle était beaucoup plus proche du poids réel qu’aucune des estimations individuelles. La “sagesse” de la foule était supérieure à chacune des intelligences isolées[6]. Cette forme d’intelligence collective statistique – ou comptable – suppose que les individus ne communiquent pas entre eux et ne se coordonnent d’aucune manière. Elle fonctionne d’autant mieux que la distribution des choix ou des prédictions s’étend sur un large spectre, de sorte que les erreurs et les biais individuels se compensent. Ce type d’intelligence collective suppose – paradoxalement – l’ignorance mutuelle. Elle s’exprime dans les sondages ou dans les élections, lorsqu’il est interdit de communiquer les résultats partiels avant que tout le monde ait voté. Cette approche de l’intelligence collective statistique sans connexion entre ses membres a été notamment popularisée par James Surowiecki dans son livre « la Sagesse des Foules »[7]

Une seconde forme d’intelligence collective, délibérative, repose au contraire sur la communication directe entre les membres d’une communauté. Elle résulte de l’échange des arguments et des points de vue. Face à un problème commun, elle peut converger sur un consensus ou se partager entre quelques solutions dont on a – tous ensemble – pesé le pour et contre. Pourvu que l’écoute soit au rendez-vous, chacun amène son point de vue, sa compétence particulière, qui enrichit le débat général[8]. Ce type d’intelligence collective, apparemment idéale puisqu’elle est ouverte et réflexive, est d’autant plus difficile à mettre en œuvre que la collectivité est étendue. Il faut alors établir des formes de hiérarchie et de délégation, certes indispensables mais qui troublent la transparence de l’intelligence collective à elle-même.

Je voudrais maintenant introduire une forme d’intelligence collective moins connue mais qui n’en est pas moins à l’œuvre dans nombre de sociétés animales et qui a trouvé son plus haut degré d’achèvement dans l’humanité: la communication stigmergique. L’étymologie grecque explique assez bien le sens du mot « stigmergie » : des marques (stigma) sont laissées dans l’environnement par l’action ou le travail (ergon) de membres d’une collectivité, et ces marques guident en retour – et récursivement – leurs actions[9]. Le cas classique est celui des fourmis qui laissent une traîne de phéromones sur leur passage lorsqu’elles ramènent de la nourriture à la fourmilière. L’odeur des phéromones incite d’autres fourmis à remonter leurs traces pour découvrir le butin et ramener des vivres à la ville souterraine en laissant par terre à leur tour un message parfumé. Le langage confère à l’humanité un haut degré d’intelligence collective, supérieur à celui des autres mammifères et comparable à celui des abeilles ou des fourmis. Comme d’autres espèces eusociales, nous communiquons en grande partie de manière stigmergique, mais au lieu de marquer un territoire physique au moyen de phéromones ou d’autres types de signaux visuels, sonores ou olfactifs, nous laissons des traces symboliques. Au fur et à mesure de l’évolution culturelle, les signifiants s’accumulent dans des mémoires externes de plus en plus perfectionnées : pierres levées, totems, paysages sculptés, monuments, architectures, signes d’écriture, archives, bibliothèques, bases de données. On peut prétendre que toute forme d’écriture qui n’est pas précisément adressée est une forme de communication stigmergique : des traces sont déposées pour une lecture à venir et font office de mémoire externe d’une communauté.

Les différents processus d’intelligence collectives qui viennent d’être évoqués, statistique (sans communication), délibératifs (à communication directe) et stigmergique (à communication indirecte) ne sont évidemment pas exclusives l’une de l’autre et peuvent fort bien se succéder ou se combiner. Par exemple, les wikipédiens se coordonnent par l’intermédiaire de bases de données communes, délibèrent et votent.

A l’échelle de l’espèce, l’intelligence collective humaine se situe dans la continuité de l’intelligence collective animale, mais elle est plus perfectionnée à cause du langage, des techniques et des institutions politiques, économiques, légales et autres qui nous caractérisent. La principale différence entre les intelligences collectives animale et humaine tient à la culture. Dans une dimension diachronique, notre espèce est entraînée par une vitesse d’apprentissage supérieure à celle de l’évolution biologique. Nos savoir-faire s’accumulent et se transmettent d’une génération à l’autre grâce à nos mémoires externes, au moyen de systèmes de signes, de conventions sociales et d’outils. Aucun individu ne serait « intelligent » s’il n’héritait pas des connaissances créées par les ancêtres. Dans une dimension synchronique, nous participons à une intelligence collective coordonnée où résonnent et se relancent l’architecture conceptuelle de nos mémoires communes et l’organisation sociale de nos collectivités. La définition réciproque des identités et la reconnaissance des problèmes se décident à ce méta-niveau de la culture. Au-delà des procédures utiles (stigmergique, statistique et délibérative) pour résoudre des problèmes, il existe donc une intelligence collective plus holistique, qui circonscrit les capacités cognitives d’une société.

L’évolution culturelle a déjà franchi plusieurs seuils d’intelligence collective. En effet, les inventions de l’écriture, de l’imprimerie et des médias électroniques (enregistrement musical, téléphone, radio, télévision) ont déjà augmenté de manière irréversible nos capacités de mémoire et de communication sociale. Le surgissement d’une communication globale par l’intermédiaire de la mémoire numérique est probablement le plus grand changement social des vingt-cinq dernières années. Cette nouvelle forme de communication par lecture-écriture distribuée dans une mémoire numérique collective représente une mutation anthropologique de grande ampleur. Plongés dans le nouvel environnement numérique, nous interagissons par le moyen de la masse océanique de données qui nous rassemble. Les encyclopédistes de Wikipédia et les programmeurs de GitHub collaborent par l’intermédiaire d’une même base de données. A notre insu, chaque lien que nous créons, chaque étiquette ou hashtag apposée sur une information, chaque acte d’évaluation ou d’approbation, chaque « j’aime », chaque requête, chaque achat, chaque commentaire, chaque partage, toutes ces opérations modifient subtilement la mémoire commune, c’est-à-dire le magma inextricable des rapports entre les données. Notre comportement en ligne émet un flux continuel de messages et d’indices qui transforment la structure de la mémoire et contribuent à orienter l’attention et l’activité de nos contemporains. Nous déposons dans l’environnement virtuel des phéromones électroniques qui déterminent en boucle l’action des autres internautes et qui entraînent par-dessus le marché les neurones formels des intelligences artificielles (IA).

L’intelligence artificielle comme augmentation de l’intelligence collective

Abordons maintenant le thème de l’intelligence artificielle, mais sous l’angle – qui paraîtra peut-être insolite à quelques lecteurs – de l’intelligence collective. Les journalistes et le grand public ont tendance à classer dans “l’intelligence artificielle” les applications considérées comme avancées à l’époque où elles apparaissent. Mais quelques années plus tard ces mêmes applications, devenues banales et quotidiennes, seront le plus souvent réinterprétées comme appartenant à l’informatique ordinaire[10]. Par delà les titres apocalyptiques et les images de jeunes femmes au cerveau chromé censées illustrer “l’intelligence artificielle”, nous assistons depuis le milieu du XXe siècle à un processus de réification formelle et d’extériorisation des fonctions cognitives. L’augmentation de puissance et la baisse des coûts du matériel distribuent ces fonctions cognitives objectivées dans l’ensemble de la société. Des machines interconnectées enregistrent et retrouvent de l’information, effectuent des calculs arithmétiques ou algébriques, simulent des phénomènes complexes, raisonnent logiquement, respectent des syntaxes et des systèmes de règles, extraient des formes à partir de distributions statistiques enchevêtrées… L’informatique automatise et socialise nos capacités de communication, nos facultés de mémoire, de perception, d’apprentissage, d’analyse et de synthèse.

Du fait même de son nom, l’intelligence artificielle évoque naturellement l’idée d’une intelligence autonome de la machine, qui se pose en face de l’intelligence humaine, pour la simuler ou la dépasser. Mais si nous observons les usages réels des dispositifs d’intelligence artificielle, force est de constater que, la plupart du temps, ils augmentent, assistent ou accompagnent les opérations de l’intelligence humaine. Déjà, à l’époque des systèmes experts – lors des années 80 et 90 du XXe siècle – j’observais que les savoirs critiques de spécialistes au sein d’une organisation, une fois codifiés sous forme de règles animant des bases de connaissances, pouvaient être mis à la portée des membres qui en avaient le plus besoin, répondant précisément aux situations en cours et toujours disponibles. Plutôt que d’intelligences artificielles prétendument autonomes, il s’agissait de médias de diffusion des savoir-faire pratiques, qui avaient pour principal effet d’augmenter l’intelligence collective des communautés utilisatrices[11].

Dans la phase actuelle du développement de l’IA, le rôle de l’expert est joué par les foules qui produisent les données et le rôle de l’ingénieur cogniticien qui codifie le savoir est joué par les réseaux neuronaux. Au lieu de demander à des linguistes comment traduire ou à des auteurs reconnus comment produire un texte, les modèles statistiques interrogent à leur insu les multitudes de rédacteurs anonymisés du web et ils en extraient automatiquement des patterns de patterns qu’aucun programmeur humain n’aurait pu tirer au clair. Conditionnés par leur entraînement, les algorithmes peuvent alors reconnaître et reproduire des données correspondant aux formes apprises. Mais parce qu’ils ont abstrait des structures plutôt que de tout enregistrer, les voici capables de conceptualiser correctement des formes (d’image, de textes, de musique, de code…) qu’ils n’ont jamais rencontrées et de produire une infinité d’arrangements symboliques nouveaux. C’est pourquoi l’on parle d’intelligence artificielle générative. L’IA neuronale synthétise et mobilise la mémoire commune. Bien loin d’être autonome, elle prolonge et amplifie l’intelligence collective. Des millions d’utilisateurs contribuent au perfectionnement des modèles en leur posant des questions et en commentant les réponses qu’ils en reçoivent. On peut prendre l’exemple de Midjourney, dont les utilisateurs s’échangent leurs consignes (prompts) et améliorent constamment leurs compétences en IA. Les serveurs Discord de Midjourney sont aujourd’hui les plus populeux de la planète, avec plus d’un million d’utilisateurs. Une nouvelle intelligence collective stigmergique émerge de la fusion des médias sociaux, de l’IA et des communautés de créateurs.

L’IA contemporaine fonctionne ainsi comme le conduit d’une boucle de rétroaction entre la mémoire numérique commune et les productions individuelles qui l’exploitent et s’accumulent à leur tour dans les centres de données. Derrière la machine il faut entrevoir l’intelligence collective qu’elle réifie et mobilise.

­­­­Le partage du savoir : vers une intelligence collective neurosymbolique

L’intelligence collective aujourd’hui supportée par l’intelligence artificielle n’est encore que partielle. En effet, l’utilisation des données de l’Internet pour entraîner les modèles mobilise les intelligences collectives stigmergique (la boucle de rétroaction entre les comportements individuels et la mémoire commune) et statistique (l’apprentissage neuronal). Au début des années 2020, la connexion et le renforcement mutuel de ces deux formes d’intelligence collective par les nouveaux dispositifs d’intelligence artificielle a provoqué un choc intellectuel – et des émotions fortes – chez ceux qui en ont aperçu la puissance. Mais une intelligence collective délibérative et réflexive manque encore à l’appel. A l’échelle où nous nous situons, cette intelligence collective délibérative doit porter sur l’organisation des données, c’est-à-dire sur la structure conceptuelle de la mémoire, inévitablement couplée aux pratiques des communautés. Comment faire en sorte que les réseaux de concepts qui informent la mémoire numérique puissent faire l’objet d’une conversation ouverte, transparente, attentive aux conséquences de ses choix? Le Web sémantique et son empilement de standards (XML, RDF, OWL, SPARQL) a certes établi une interopérabilité de formats, mais non pas l’interopérabilité proprement sémantique – celle des architectures de concepts – dont nous avons besoin. Les géants du web ont leurs graphes de connaissances, mais ces derniers sont malheureusement privés et secrets. Wikidata propose un exemple de graphe de connaissance ouvert, mais il est encore bien difficile à explorer et utiliser quotidiennement par le grand public. Il se présente de plus comme une ontologie, celle de l’encyclopédie Wikipédia, alors qu’il faudrait mettre en harmonie et en dialogue la multitude des ontologies qui émergent de pratiques aussi diverses que l’on voudra.

C’est pour résoudre ce problème de l’émergence d’une intelligence collective délibérative (ou réflexive) à support numérique que j’ai inventé IEML (Information Economy MetaLanguage) : une langue artificielle pourvue d’une structure algébrique régulière, dont la sémantique est calculable, qui permet de tout dire et qui peut traduire n’importe quel réseau de concept[12]. IEML est un langage à source ouverte, qui se place dans la perspective d’une augmentation des communs de la connaissance, et dont le développement doit faire l’objet d’une gouvernance décentralisée. Aussi hétérogènes ou divers qu’ils soient, IEML projette les ontologies, graphes de connaissances, collections d’étiquettes et modèles de données sur le même système de coordonnées sémantique : un univers virtuellement infini de différences conceptuelles donnant prise aux algorithmes. IEML peut servir de langage pivot entre les langues naturelles, entre les humains et les machines, entre les modèles d’IA.  Il va sans dire que la plupart de ses bénéficiaires n’auront pas à l’apprendre puisque les interfaces des applications, y compris l’éditeur lui-même, seront en langues naturelles ou sous forme iconique. La face « code » d’IEML n’est destinée qu’aux ordinateurs. On peut dès lors envisager qu’une multitude de bases de connaissances aux architectures conceptuelles singulières puissent échanger des modules ontologiques et des informations grâce à l’interopérabilité sémantique assurée par ce langage de métadonnées commun.

Considérons maintenant l’idéal des lumières de mettre la connaissance à la portée de tous. Cette finalité dépasse l’objet « encyclopédie » – qui n’est finalement qu’un moyen particulier adapté aux possibilités techniques et culturelles d’une époque – pour ouvrir de vastes horizons et  retentir jusque dans un avenir encore inimaginable.

Ce concept se décompose en deux exercices complémentaires: (a) celui de permettre à toutes les connaissances de s’exprimer, de s’accumuler et de communiquer ; (b) celui de faciliter l’exploration et l’appropriation des connaissances selon la gamme étendue des situations pratiques, des parcours d’apprentissage et des styles cognitifs. On voit l’affinité de cet idéal avec celui d’une intelligence collective – diamétralement opposée au “group think” – qui vise à maximiser simultanément la liberté créatrice et l’efficacité collaborative.

On pardonnera au philosophe que je suis l’évocation d’une utopie concrète, sans doute techniquement réalisable, mais qui – à court terme – vise d’abord à faire penser. Imaginons donc un dispositif destiné au partage des connaissances et qui tire le maximum des possibilités techniques contemporaines. Au cœur de ce dispositif évolue un écosystème ouvert de bases de connaissances catégorisées en IEML, qui émergent d’une multitude de communautés de recherche et de pratique. Entre ce noyau de bases de connaissances interopérables et les utilisateurs humains vivants s’interpose une interface neuronale (un écosystème de modèles) « no code » qui donne accès au contrôle, à l’alimentation, à l’exploration et à l’analyse des données. Tout se passe de manière intuitive et directe, selon les modalités sensori-motrices sélectionnées. C’est aussi par l’intermédiaire de ce giga-perceptron – un métavers immersif, social et génératif – que les collectifs échangent et discutent les modèles de données et réseaux sémantiques qui organisent leurs mémoires. En bonne gestion des connaissances, le nouveau dispositif de partage des savoirs favorise l’enregistrement des créations, accompagne les parcours d’apprentissage et présente les informations utiles aux acteurs engagés dans leurs pratiques.

Pour ce qui est commun, chaque base de connaissance – personnelle ou collective – affiche son univers de discours, ses données et ses statistiques, aussi transparente aux algorithmes qu’elle l’est aux regards humains. Mais pour ce qui est privé, notre dispositif de partage des connaissances assure la souveraineté pratique et légale des individus et des groupes sur les données qu’ils produisent et qu’ils ne divulguent qu’aux acteurs choisis.

L’augmentation décisive de la dimension délibérative de l’intelligence collective grâce à l’utilisation d’un langage de métadonnées commun a des effets multiplicateurs sur les intelligences collectives statistique et stigmergique déjà à l’œuvre aujourd’hui. Une nouvelle infrastructure neurosymbolique plonge l’intelligence collective du futur dans l’univers explorable émanant de ses propres activités cognitives. Il faut cependant bien distinguer l’intelligence collective qui anime les personnes et les collectivités humaines vivantes des extensions mécaniques et des représentations médiatiques qui l’augmentent. Ne faisons pas une idole de l’intelligence artificielle.

Citant Ibn Roshd (l’Averroes des latins), Dante écrit au chapitre I, 3 de sa Monarchie :  “Le terme extrême proposé à la puissance de l’humanité est la puissance, ou vertu, intellective. Et parce que cette puissance ne peut, d’un seul coup, se réduire toute entière en acte par le moyen d’un seul homme ou d’une communauté particulière, il est nécessaire qu’il règne dans le genre humain une multitude par le moyen de laquelle soit mise en acte cette puissance toute entière.” Que cette multitude devienne transparente à elle-même dans le nouveau médium algorithmique et nous serons passés de la fourmilière à la cité.


[1] https://meta.wikimedia.org/wiki/Abstract_Wikipedia consulté le 8 juillet 2023

[2] https://www.knowledgegraph.tech/ consulté le 8 juillet 2023

[3] https://www.theregister.com/2023/06/16/crowd_workers_bots_ai_training consulté le 8 juillet 2023

[4] Lévy, Pierre. L’Intelligence collective. Pour une anthropologie du cyberespace. Paris: La Découverte, 1994.

[5] Voir par exemple : Baltzersen, Rolf. Cultural-Historical Perspectives on Collective Intelligence: Patterns in Problem Solving and Innovation. Cambridge, Mass: Cambridge University Press, 2022.

[6] Galton, Francis 1907, Vox populi, Nature, 75, 450-451.

[7] Surowiecki, James. The Wisdom of Crowds. Doubleday, 2004

[8] Voir par exemple : Zara, Olivier. Le chef parle toujours en dernier: Manifeste de l’intelligence collective, Axiopole, 2021, et Mulgan, Geoff. Big Mind. How Collective Intelligence Can Change Our World. Princeton: Princeton University Press, 2017.

[9] Heylighen, Francis. “Stigmergy as a Universal Coordination Mechanism I: Definition and Components.” Cognitive Systems Research 38 (2016): 4–13. https://doi.org/10.1016/j.cogsys.2015.12.002

Heylighen, Francis. “Stigmergy as a Universal Coordination Mechanism II: Varieties and Evolution.” Cognitive Systems Research, 2016, 50–59. https://doi.org/10.1016/j.cogsys.2015.12.007

[10] Lévy, Pierre. “Pour un changement de paradigme en Intelligence artificielle”, Giornale di Filosofia (Roma) numéro spécial sur Technology and Constructive Critical Thought, 15 décembre 2021

[11] Lévy, Pierre. “Les systèmes à base de connaissance comme médias de transmission de l’expertise”, Intellectica  numéro spécial “Expertise et sciences cognitives”, ed. Violaine Prince. 1991. p. 187 – 219.

[12] Lévy, Pierre. La Sphère Sémantique. Computation, Cognition, Économie de l’information. Paris-London: Hermès-Lavoisier, 2011.

Id. « Le calcul sémantique avec IEML », Humanités numériques, à paraître dans le numéro d’hiver 2023. https://journals.openedition.org/revuehn/

Comment penser la nouvelle sphère publique numérique? Je commencerai par évoquer le contexte anthropologique et démographique du basculement de la sphère publique dans l’environnement numérique. Dans un second temps, j’analyserai les nouvelles formes de mémoire et de communication supportées par le nouveau médium. J’évoquerai ensuite les figures de la domination et de l’aliénation propres à ce milieu de communication. Je terminerai, comme il se doit, par quelques perspectives d’émancipation.

1 Le contexte

Une nouvelle époque de la culture

Un des facteurs principaux de l’évolution des écosystèmes d’idées réside dans le dispositif matériel de production et de reproduction des symboles, mais aussi dans les systèmes « logiciels » d’écriture et de codage de l’information. Au cours de l’histoire, les symboles (avec les idées qu’ils portaient) ont été successivement pérennisés par l’écriture, allégés par l’alphabet et le papier, multipliés par l’imprimerie et les médias électriques.

A chaque étape, de nouvelles formes politiques sont apparues : villes, palais-temples et premiers états avec l’écriture, empires et cités avec l’alphabet ou le papier, états nations avec l’imprimerie et les médias électroniques.

Les symboles sont aujourd’hui numérisés et calculés, c’est-à-dire qu’une foule de robots logiciels – les algorithmes – les enregistrent, les comptent, les traduisent et en extraient des patterns. Les objets symboliques (textes, images fixes ou animées, voix, musiques, programmes, etc.) sont non seulement enregistrés, reproduits et transmis automatiquement, ils sont aussi générés et transformés de manière industrielle. En somme, l’évolution culturelle nous a menés au point où les écosystèmes d’idées se manifestent sous l’avatar de données animées par des algorithmes dans un espace virtuel ubiquitaire. Et c’est dans cet espace que se nouent, se maintiennent et se dénouent les liens sociaux, là que se jouent désormais les drames de la Polis… 

Le basculement démographique

L’hypothèse d’une mutation anthropologique rapide et de grande ampleur se fonde sur des données quantitatives qui ne prêtent pas à controverse.

Accès aux ordinateurs

Concernant l’accès aux ordinateurs, on peut considérer que 0,1 pour cent de la population mondiale avait un accès direct à un ordinateur en 1975 (avant la révolution de l’ordinateur personnel). Cette proportion se montait à 20% dans les pays riches en 1990 (avant la révolution du Web). En 2022, pour les pays européens, la proportion oscillait entre 65% (Grèce) et 95% (Luxembourg). A noter que ces derniers chiffres ne prennent pas en compte les téléphones portables.

Accès à l’Internet

La proportion de la population mondiale qui avait accès à l’Internet était d’environ 1% en 1990 (donc avant le Web), de 4% en 1999, de 24% en 2009, de de 51% en 2018 et de 65% en 2023. Selon l’Organisation internationale des télécommunications, environ 5 milliards de personnes sont des internautes. Toujours pour 2023, mais seulement en Europe, la proportion de la population branchée à l’Internet se monte à 93% (ce sont les données de l’Union Européenne).

Prise de connaissance des nouvelles

Pour compléter ces statistiques avec des données concernant plus directement la politique, 40% des européens et 50% des américains et canadiens prennent connaissance des nouvelles par les médias sociaux (je dis bien les médias sociaux et pas l’Internet en général). On dépasse partout les 50% pour les moins de quarante ans. Pour les données spécifiques concernant la lecture des journaux par opposition à la lecture de textes en ligne, les moins de trente ans lisent les nouvelles en ligne à 80% (données du Pew Research Center).

2 Mémoire et communication numérique

La nouvelle sphère publique

En somme, moins d’un siècle après l’invention des premiers ordinateurs, plus de soixante cinq pour cent de la population mondiale est branchée à l’internet et la mémoire du monde est numérisée. Qu’une information se trouve en un point du réseau et la voici partout. Du texte statique sur papier, nous sommes passé à l’hypertexte ubiquitaire, puis à l’Architexte surréaliste qui rassemble tous les symboles. Une mémoire virtuelle s’est mise à croître, secrétée par des milliards de vivants et de morts, fourmillant de langues, de musiques et d’images, grosse de rêves et de fantasmes, mêlant la science et le mensonge. La nouvelle sphère publique est multimédia, interactive, mondiale, fractale, stigmergique et – désormais – médiée par l’intelligence artificielle.

La nouvelle sphère publique est mondiale. Aussi bien le web que les grands médias sociaux comme Facebook, Twitter, LinkedIn, Telegram, Reddit, etc. sont internationaux et multilingues. La traduction automatique a atteint un point ou l’on peut maintenant comprendre, avec quelques erreurs, ce qu’un internaute écrit dans une autre langue. J’ajoute que, parallèlement à la traduction, la synthèse automatique de longs textes progresse, ce qui ajoute à la porosité des diverses bulles cognitives et sémantiques.

La sphère publique numérique est fractale, c’est-à-dire qu’elle se subdivise en sous-groupes, eux-mêmes subdivisés en sous-groupes, et ainsi de suite récursivement, avec toutes les réunions et intersections imaginables. Ces subdivisions recoupent des distinctions de plateformes, de langues, de zones géographiques, de centres d’intérêts, d’orientations politiques, etc. On peut donner comme exemples les groupes Facebook ou LinkedIn, les serveurs Discord, les canaux YouTube ou Telegram, les communautés de Reddit, etc.

L’intelligence collective stigmergique

Si l’échange de messages point à point a toujours lieu, la majeure part de la communication sociale s’effectue désormais de manière stigmergique. La notion de stigmergie est une des clés de la compréhension du fonctionnement de la sphère publique numérique. On distingue traditionnellement trois schémas de communication : un-un, un-plusieurs et plusieurs-plusieurs. Le schéma un-un correspond au dialogue, au courrier postal classique ou au téléphone traditionnel. Le schéma un-plusieurs décrit le dispositif où un éditeur/émetteur central envoie ses messages à une masse de récepteurs dits « passifs ». Ce dernier schéma correspond à la presse, au disque, à la radio et à la télévision. Internet représente une rupture parce qu’il permet à l’ensemble des participants d’émettre pour un grand nombre de récepteurs selon un schéma en réseau décentralisé « plusieurs vers plusieurs ». Cette dernière description est néanmoins trompeuse. En effet, si tout le monde émet pour tout le monde (ce qui est le cas), tout le monde ne peut pas écouter tout le monde. Ce qui se passe en réalité est que les internautes contribuent à alimenter une mémoire commune et prennent connaissance en retour du contenu de cette mémoire par l’intermédiaire de procédures de recherche et de sélection automatisées. Ce sont les fameux algorithmes de Google, (Page Rank), de Facebook, de Twitter, d’Amazon (recommandations), etc.

L’étymologie grecque explique assez bien le sens du mot « stigmergie » : des marques (stigma) sont laissées dans l’environnement par l’action ou le travail (ergon) de membres d’une collectivité, et ces marques guident en retour – et récursivement – leurs actions. Le cas classique est celui des fourmis qui laissent une traîne de phéromones sur leur passage lorsqu’elles ramènent de la nourriture à la fourmilière. L’odeur des phéromones incite d’autres fourmis à remonter leurs traces pour découvrir le butin et ramener des vivres à la ville souterraine en laissant par terre à leur tour un message parfumé.

On peut prétendre que toute forme d’écriture qui n’est pas précisément adressée est une forme de communication stigmergique : des traces sont déposées pour une lecture à venir et font office de mémoire externe d’une communauté. Si le phénomène est fort ancien, il a pris depuis le début du siècle une nouvelle ampleur. Plongés dans la nouvelle sphère publique numérique, nous communiquons par l’intermédiaire de la masse océanique de données qui nous rassemble. Les encyclopédistes de Wikipédia et les programmeurs de GitHub collaborent par l’intermédiaire d’une même base de données. A notre insu, chaque lien que nous créons, chaque étiquette ou hashtag apposée sur une information, chaque acte d’évaluation ou d’approbation, chaque « j’aime », chaque requête, chaque achat, chaque commentaire, chaque partage, toutes ces opérations modifient subtilement la mémoire commune, c’est-à-dire le magma inextricable des rapports entre les données. Notre comportement en ligne émet un flux continuel de messages et d’indices qui transforment la structure de la mémoire et contribuent à orienter l’attention et l’activité de nos contemporains. Nous déposons dans l’environnement virtuel des phéromones électroniques qui déterminent en boucle l’action des autres internautes et qui entraînent par-dessus le marché les neurones formels des intelligences artificielles (IA).

Le rôle de l’Intelligence artificielle dans la nouvelle sphère publique

Le cerveau biologique abstrait le détail des expériences actuelles en schémas d’interactions, ou concepts, codés par des patterns de circuits neuronaux. De la même manière, les modèles neuronaux de l’IA condensent les données innombrables de la mémoire numérique. Ils virtualisent les données actuelles en patterns et en patterns de patterns. Conditionnés par leur entraînement, les algorithmes peuvent alors reconnaître et reproduire des données correspondant aux formes apprises. Mais parce qu’ils ont abstrait des structures plutôt que de tout enregistrer, les voici capables de conceptualiser correctement des formes (d’image, de textes, de musique, de code…) qu’ils n’ont jamais rencontrées et de produire une infinité d’arrangements symboliques nouveaux. C’est pourquoi l’on parle d’intelligence artificielle générative.

La mémoire numérique est détachée de son lieu d’émission et de réception, mise en commun, en attente de lecture, suspendue dans les “nuages” de l’Internet, logicielle. Cette masse de donnée est maintenant compressée par des modèles neuronaux. Et les patterns cachés dans les myriades de couches et de connexions des cerveaux électroniques font retomber en pluie des objets symboliques inédits. Nous ne semons des données que pour récolter du sens.

L’IA nous offre un nouvel accès à la mémoire numérique mondiale. C’est aussi une manière de mobiliser cette mémoire pour automatiser des opérations symboliques de plus en plus complexes, impliquant l’interaction d’univers sémantiques et de systèmes de comptabilité hétérogènes.

3 Le côté obscur

L’état-plateforme et la nouvelle bureaucratie dans les nuages

Si les analyses qui précèdent ont quelque validité, le pouvoir politique se joue pour une bonne part dans la sphère publique numérique. Or son contrôle ultime se trouve « dans les nuages », aux mains des bureaucraties célestes qui calculent les interactions sociales et la mémoire. Les nuages, c’est-à-dire les réseaux de centres de données possédées par l’oligopole des GAFAM, BATX et compagnie. C’est pourquoi les prétendants à l’hégémonie politique mondiale, essentiellement les américains et les chinois, s’allient avec les seigneurs des données – ou les soumettent – parce que les oligarques numériques détiennent le contrôle matériel de la mémoire mondiale et de la sphère publique. Eux seuls ont d’ailleurs la capacité de mémoire et la puissance de calcul nécessaires à l’entraînement des modèles d’IA généraux dits « fondationnels ». Ce que j’appelle un État-Plateforme résulte de l’imbrication d’une super-puissance politique avec une fraction de l’oligarchie numérique.

La bureaucratie des nuages est plus efficace que celle des états-nations, héritée de l’ère de l’imprimerie. Déjà, plusieurs fonctions gouvernementales ou régaliennes sont assurées par les grandes plateformes ou par des réseaux numériques « décentralisés ». La liste qui suit n’est pas close :

  • Vérification de l’identité des personnes, reconnaissance faciale
  • Cartographie et cadastre
  • Création monétaire
  • Régulation du marché
  • Éducation et recherche
  • Fusion de la défense et de la cyberdéfense
  • Contrôle de la sphère publique, censure, propagande, “nudge” (coup de pouce statitique)
  • Surveillance
  • Biosurveillance

Les médias sociaux : addictions et manipulations

Notre allégeance aux seigneurs des données vient de la puissance de leurs centres de calcul, de leur efficacité logicielle et de la simplicité de leurs interfaces. Elle trouve aussi sa source dans notre dépendance à une architecture sociotechnique toxique, qui utilise la stimulation dopaminergique et les renforcements narcissiques addictifs de la communication numérique pour nous faire produire toujours plus de données. On sait combien, de ce point de vue, la santé mentale des populations adolescentes est à risque. En plus de la biopolitique évoquée par Michel Foucault, il faut donc maintenant considérer une psychopolitique à base de neuromarketing, de données personnelles et de gamification du contrôle.

Il faut s’y faire : la Polis a basculé dans la grande base de données mondiale de l’Internet. Dès lors, les luttes de pouvoir – toutes les luttes de pouvoir, qu’elles soient économiques, politiques ou culturelles – sont reconduites et compliquées dans le nouvel espace numérique. Sur le terrain glissant des médias sociaux, les camps qui s’affrontent disposent leurs armées de trolls coordonnées en temps réel, équipées de bots dernier cri, renseignées par l’analyse automatique des données et augmentées par l’apprentissage machine. Dans la guerre civile mondiale qui fait rage, politique intérieure et extérieure inextricablement mêlées, les nouveaux mercenaires sont les influenceurs. 

Mais toutes ces nouveautés n’invalident pas les règles classiques de la propagande, toujours d’actualité : répétition continuelle, simplicité des mots d’ordre, images mémorables, provocation affective et résonnance identitaire. Personne n’oublie non plus les conseils avisés de Machiavel pour amener l’ennemi à s’auto-détruire : « La guerre secrète consiste à se mettre dans la confidence d’une ville divisée, à se porter pour médiateur entre les deux partis jusqu’à ce qu’ils en viennent aux armes : et quand l’épée est enfin tirée à donner des secours prudemment dosés au parti le plus faible, autant dans le but de faire durer la guerre et de les laisser se consumer les uns par les autres, que pour se garder, par un secours trop massif, de révéler son dessein de les opprimer et de les maîtriser tous deux également. Si l’on suit soigneusement cette marche, on arrive presque toujours à son but. »[1]

La tête baissée sur nos smartphones, nous faisons tourner en boucle les stéréotypes qui renforcent nos identités éclatées et nos mémoires courtes sous le regard narquois des experts de l’intoxication, communicants stipendiés, spécialistes du marketing et agents d’influence géopolitiques…

IA et domination culturelle

Poursuivons cette revue des côtés obscurs de la nouvelle sphère publique par les enjeux de domination culturelle liés à l’Intelligence artificielle. On parle beaucoup des « biais » de tel ou tel modèle d’intelligence artificielle, comme s’il pouvait exister une IA non-biaisée ou neutre. Cette question est d’autant plus importante que, comme je l’ai suggéré plus haut, l’IA devient notre nouvelle interface avec les objets symboliques : stylo universel, lunettes panoramiques, haut-parleur général, programmeur sans code, assistant personnel. Les grands modèles de langue généralistes produits par les plateformes dominantes s’apparentent désormais à une infrastructure publique, une nouvelle couche du méta-médium numérique. Ces modèles généralistes peuvent être spécialisés à peu de frais avec des jeux de données issues d’un domaine particulier et de méthodes d’ajustement. On peut aussi les munir de bases de connaissances dont les faits ont été vérifiés.

Les résultats fournis par une IA découlent donc de plusieurs facteurs qui contribuent tous à son orientation ou si l’on préfère, à ses « biais ». a) Les algorithmes proprement dits sélectionnent les types de calcul statistique et les structures de réseaux neuronaux. b) Les données d’entraînement favorisent les langues, les cultures, les options philosophiques, les partis-pris politiques et les préjugés de toutes sortes de ceux qui les ont produites. c) Afin d’aligner les réponses de l’IA sur les finalités supposées des utilisateurs, on corrige (ou on accentue!) « à la main » les penchants des données par ce que l’on appelle le RLHF (Reinforcement Learning from Human Feed-back – en français : apprentissage par renforcement à partir d’un retour d’information humain). d) Finalement, comme pour n’importe quel outil, l’utilisateur détermine les résultats au moyen de consignes en langue naturelle (les fameux prompts). Il faut noter que des communautés d’utilisateurs s’échangent et améliorent collaborativement de telles consignes. La puissance de ces systèmes n’a d’égal que leur complexité, leur hétérogénéité et leur opacité. Le contrôle règlementaire de l’IA, sans doute nécessaire, semble difficile.

4 Perspectives d’émancipation

Littéracie numérique et pensée critique

Malgré tout ce qui vient d’être dit, la sphère publique du XXIe siècle est plus ouverte que celle du XXe siècle : les citoyens des pays démocratiques y jouissent d’une grande liberté d’expression et peuvent choisir leurs sources d’information parmi un vaste éventail de spécialisations thématiques, de langues et d’orientations politiques. Cette liberté d’expression et d’information, la nouvelle puissance distribuée de création et d’analyse de données, sans oublier les possibilités de coordination sociale offertes par le nouveau médium, tout cela ne représente que des potentialités émancipatrices. Seule une véritable éducation à la pensée critique dans le nouvel environnement de communication permettra d’actualiser ce potentiel de citoyenneté renouvelée. Pour fixer les idées, une étude de la BBC a récemment montré que 50% des jeunes gens de 12 à 16 ans croient aux nouvelles partagées sur les médias sociaux sans les vérifier. Et nous savons d’expérience que les enfants ne sont pas les seuls sujets crédules. Idéalement, la nouvelle éducation à la pensée critique devrait enseigner aux futurs citoyens à s’organiser comme de petites agences de renseignement autonomes qui rangent leurs centres d’intérêts par ordre de priorité, sélectionnent soigneusement des sources diversifiées, analysent les données à partir d’hypothèses explicites et maintiennent une classification pertinente de leur mémoire numérique personnelle. Il faut apprendre à discerner les sources de données en termes de catégories organisatrices, de récits dominants et d’agendas. On inculquera le réflexe journalistique élémentaire de croiser les sources ainsi identifiées. Enfin, les élèves devraient être entraînés à l’intelligence collective stigmergique et à l’apprentissage collaboratif.

Pour une gouvernance de la sphère publique numérique

Je me contenterai ici d’indiquer quelques grandes orientations d’une nécessaire gouvernance de la nouvelle sphère publique plutôt que de déterminer précisément les moyens d’y parvenir. Si le pilotage par gros temps peut nécessiter de nombreux détours, le cap est clair : il s’agit de perfectionner, autant que possible, la dimension réflexive d’une intelligence collective déjà en acte.

  • A l’appui de cette finalité, la transparence des processus en ligne semble une condition sine qua non. Je vise en particulier, mais pas seulement, une description claire, brève et en langue naturelle des algorithmes et des données d’entraînement des IA.
  • A l’exemple de Wikimédia, efforçons-nous de maximiser les « communs » de la connaissance.
  • Ouvrons les jeux de données et les algorithmes selon la voie tracée par le mouvement du logiciel libre.
  • Assurons la souveraineté pratique et légale des individus et des groupes sur les données qu’ils produisent.
  • Enfin, décentralisons la gouvernance des interactions en ligne en favorisant les procédures consensuelles. Le mouvement social qui porte la blockchain indique ici un chemin possible.

Afin d’apporter ma pierre au projet d’une intelligence collective réflexive j’ai inventé une langue (IEML, Information Economy MetaLanguage) ayant la même capacité d’expression et de traduction que les langues naturelles mais qui a aussi la régularité d’une algèbre, permettant ainsi un calcul de la sémantique. Cette langue pourrait servir de système de coordonnées sémantique à la nouvelle sphère publique. Elle contribuerait ainsi à transformer la mémoire numérique en miroir de nos intelligences collectives. Dès lors, une boucle de rétroaction plus fluide entre les écosystèmes d’idées et les communautés qui les entretiennent nous rapprocherait de l’idéal d’une intelligence collective réflexive au service du développement humain et d’une démocratie renouvelée. Il ne s’agit pas d’entretenir quelque illusion sur la possibilité d’une transparence totale, mais plutôt d’ouvrir la voie à l’exploration critique d’un univers de sens infini.


[1] Discours sur la première décade de Tite-Live. La Pléiade, Gallimard, Paris, p. 588

Art: M.C. Escher

[For an English version of this post, click here.]

Le langage permet une coordination dynamique entre les réseaux de concepts entretenus par les membres d’une communauté, de l’échelle d’une famille ou d’une équipe, jusqu’aux plus grandes unités politiques ou économiques. Il permet également de raconter des histoires, de dialoguer, de poser des questions et de raisonner. Le langage soutient non seulement la communication mais aussi la pensée ainsi que l’organisation conceptuelle de la mémoire, complémentaire de son organisation émotionnelle et sensorimotrice.

Mais comment le langage fonctionne-t-il ? Du côté de la réception, nous entendons une séquence de sons que nous traduisons en un réseau de concepts, conférant ainsi son sens à une proposition. Du côté de l’émetteur, à partir d’un réseau de concepts que nous avons à l’esprit – un sens à transmettre – nous générons une séquence de sons. Le langage fonctionne comme une interface entre des séquences de sons et des réseaux de concepts. Et gardons en tête que les relations entre les concepts sont eux-mêmes des concepts.

Les chaînes de phonèmes (des sons), peuvent être remplacées par des séquences d’idéogrammes, de lettres, ou de gestes comme dans le cas de la langue des signes. L’interfaçage quasi-automatique entre une séquence d’images sensibles (sonores, visuelles, tactiles), et un graphe de concepts abstraits (catégories générales) reste constant parmi toutes les langues et systèmes d’écriture. 

Cette traduction réciproque entre une séquence d’images (le signifiant) et des réseaux de concepts (le signifié) suggère qu’une categorie  mathématique pourrait modéliser le langage en organisant une correspondance entre une algèbre et une structure de graphe. L’algèbre réglerait les opérations de lecture et d’écriture sur les textes, tandis que la structure de graphe organiserait les opérations sur les nœuds et les liens orientés. A chaque texte correspondrait un réseau de concepts. Les opérations sur les textes reflèteraient dynamiquement les opérations sur les graphes conceptuels. 

Nous avons besoin d’un langage régulier pour coder des chaînes de signifiants et nous pouvons transformer les séquences de symboles en arbres syntagmatiques (la syntaxe étant l’ordre du syntagme) et vice versa. Cependant, si son arbre syntagmatique – sa structure grammaticale interne – est indispensable à la compréhension du sens d’une phrase, il n’est pas suffisant. Parce que chaque expression linguistique repose à l’intersection d’un axe syntagmatique et d’un axe paradigmatique. L’arbre syntagmatique représente le réseau sémantique interne d’une phrase, l’axe paradigmatique représente son réseau sémantique externe et en particulier ses relations avec des phrases ayant la même structure, mais dont elle se distingue par quelques mots. Pour comprendre la phrase ” Je choisis le menu végétarien “, il faut bien sûr reconnaître que le verbe est “choisir”, le sujet “je” et l’objet “le menu végétarien” et savoir en outre que “végétarien” qualifie “menu”. Mais il faut aussi reconnaître le sens des mots et savoir, par exemple, que végétarien s’oppose à carné et à végétalien, ce qui implique de sortir de la phrase pour situer ses composantes dans les systèmes d’oppositions sémantiques de la langue. L’établissement de relations sémantiques entre concepts suppose que l’on reconnaisse les arbres syntagmatiques internes aux phrases, mais aussi les matrices paradigmatiques externes à la phrase qui organisent les concepts, que ces matrices soient propres à une langue ou à certains domaines pratiques.

Parce que les langues naturelles sont ambiguës et irrégulières, j’ai conçu une langue mathématique (IEML) traduisible en langues naturelles, une langue calculable qui peut coder algébriquement non seulement les arbres syntagmatiques, mais aussi les matrices paradigmatiques où les mots et les concepts prennent leur sens. Chaque phrase du métalangage IEML est située précisément à l’intersection d’un arbre syntagmatique et de matrices paradigmatiques. 

Sur la base de la grille syntagmatique-paradigmatique régulière d’IEML, il devient possible de générer et de reconnaître des relations sémantiques entre concepts de manière fonctionnelle : graphes de connaissance, ontologies, modèles de données… Toujours du côté de l’IA, un codage des étiquettes ou de la catégorisation des données dans cette langue algébrique qu’est IEML faciliterait l’apprentissage machine. Au-delà de l’IA, ma vision pour IEML est de favoriser l’interopérabilité sémantique des mémoires numériques et de développer une synergie entre l’autonomisation cognitive personnelle et la réflexivité de l’intelligence collective.

Sur le plan technique, il s’agit d’un projet léger et décentralisé: un dictionnaire IEML-langues naturelles, un analyseur syntaxique (parseur) open-source supportant les fonctions calculables sur les expressions de la langue et une plate-forme d’édition collaborative et de partage des concepts et ontologies. Le développement, la maintenance et l’utilisation d’un protocole sémantique basé sur l’IEML nécessitera un effort de recherche et de formation à long terme.

English version: https://intlekt.io/2022/01/18/ieml-towards-a-paradigm-shift-in-artificial-intelligence/

Art: Emma Kunz

Résumé

Le but de ce texte est de présenter une vue générale des limites de l’IA contemporaine et de proposer une voie pour les dépasser. L’IA a accompli des progrès considérables depuis l’époque des Claude Shannon, Alan Turing et John von Neumann. Néanmoins, de nombreux obstacles se dressent encore sur la route indiquée par ces pionniers. Aujourd’hui, l’IA symbolique se spécialise dans la modélisation conceptuelle et le raisonnement automatique tandis que l’IA neuronale excelle dans la catégorisation automatique. Mais les difficultés rencontrées aussi bien par les approches symboliques que neuronales sont nombreuses. Une combinaison des deux branches de l’IA, bien que souhaitable, laisse encore non résolus les problèmes du cloisonnement des modèles et les difficultés d’accumulation et d’échange des connaissances. Or l’intelligence humaine naturelle résout ces problèmes par l’usage du langage. C’est pourquoi je propose que l’IA adopte un modèle calculable et univoque du langage humain, le Métalangage de l’Économie de l’Information (IEML pour Information Economy MetaLanguage), un code sémantique de mon invention. IEML a la puissance d’expression d’une langue naturelle, il possède la syntaxe d’un langage régulier, et sa sémantique est univoque et calculable parce qu’elle est une fonction de sa syntaxe. Une architecture neuro-sémantique basée sur IEML allierait les forces de l’IA neuronale et de l’IA symbolique classique tout en permettant l’intégration des connaissances grâce à un calcul interopérable de la sémantique. De nouvelles avenues s’ouvrent à l’intelligence artificielle, qui entre en synergie avec la démocratisation du contrôle des données et l’augmentation de l’intelligence collective.

Après avoir été posté sur ce blog, le texte a été publié par le Giornale Di Filosofia numéro 2.
Lien vers –> le texte complet en PDF publié sur le site du Giornale di Filosofia. Ou bien lisez le texte ci-dessous 🙂.

Today, artificial intelligence is divided between two major trends: symbolic and statistical. The symbolic branch corresponds to what has been successively called in the last 70 years semantic networks, expert systems, semantic web and more recently, knowledge graphs. Symbolic AI codes human knowledge in the form of networks of relationships between concepts ruled by models and ontologies which give leverage to automatic reasoning. The statistical branch of AI trains algorithms to recognize visual, linguistic or other forms from large masses of data, relying on neural models roughly imitating the learning mode of the brain. Neuro-mimetic artificial intelligence has existed since the beginnings of computer science (see the work of McCulloch and von Foerster) but has only become useful because of the increase in computing power available since 2010. In the early 2020s, these two currents are merging according to a hybrid or neuro-symbolic model which seems very promising. Though many problems still remain, in terms of the consistency and interoperability of metadata.

Big tech companies and a growing number of scientific, economic and social sectors use knowledge graphs. Despite the availability of the WWW Consortium metadata standards for marking classifications and ontologies (RDF, OWL) the different sectors (see the slide below) do not communicate with each other and – even worse – divergent systems of categories and relationships are most often in use within the same domain. The interoperability of metadata standards – such as RDF – only addresses the compatibility of digital files. It should not be confused with true semantic interoperability, which addresses concept architectures and models. In reality, the problem of semantic interoperability has yet to be solved in 2021, and there are many causes for the opacity that plagues digital memory. Natural languages are multiple, informal, ambiguous and changing. Cultures and disciplines tend to divide reality in different ways. Finally, often inherited from the age of print, the numerous metadata systems in place to classify data are incompatible like thesauri, documentary languages, ontologies, taxonomies, folksonomies, sets of tags or hashtags, keywords, etc.

The Conundrum of Semantic Interoperability

There is currently no way to code linguistic meaning in a uniform and computable way, the way we code images using pixels or vectors for instance. To represent meaning, we are still using natural languages which are notoriously multiple, changing and ambiguous. With the notable exception of number notation and mathematical codes, our writing systems are primarily designed to represent sounds. Their representation of categories or concepts is indirect (characters → sound → concepts) and difficult for computers to grasp. Computers can handle syntax (the regular arrangement of characters), but their handling of semantics remains imperfect and laborious. Despite the success of machine translation (Deep L, Google translate) and automatic text generation (GPT3), computers don’t really understand the meaning of the texts they read or write.

Now, how can we resolve the problem of semantic interoperability and progress towards a thorough automatic processing of meaning? Many advances in computer science come from the invention of a relevant coding system making the coded object (number, image, sound, etc.) easily computable. The goal of our company INTLEKT Metadata Inc. has been to make concepts, categories or linguistic meaning systematically computable. In order to solve this problem, we have designed the Information Economy MetaLanguage: IEML. This metalanguage has a compact dictionary of less than 5000 words. IEML words are organized by subject-oriented paradigms and visualized as keyboards. The grammar of this metalanguage is completely regular and embedded in the IEML editor. Thank to this grammar, complex concepts and relations can be recursively constructed by combining simpler ones. It is not a super-ontology (like Cyc) but a programmable language (akin to a computable Esperanto) able to translate any ontology and to connect any possible categories. By using such a semantic code, artificial intelligence could take a giant step forward feeding collective intelligence.  Public health data from all countries would not only be able to communicate with each other, but could also harmonize with economic and social data. Occupational classifications and different international labour market statistics would automatically translate into each other. The AI of smart contracts, international e-commerce and the Internet of Things would exchange data and execute instructions based on automatic reasoning. Government statistics, national libraries, major museums and digital humanities research would feed into each other. On the machine learning side, we would reach a system of uniform and precise labels and annotations that would help AI to become more ethical, transparent, and efficient. A common semantic code would make it finally possible to achieve a de-fragmentation of the global memory and an integration of symbolic and statistical AI. The only price to pay for reaching neuro-symbolic collective intelligence would be a concerted effort for training specialists to translate metadata into IEML.

Check our prototype: https://dev.intlekt.io/

  • Once you are on the site, on the top right you can choose between french and english
  • “USL” (Uniform Semantic Locator) allows the search for words and paradigms in the dictionary
  • “Tags” gives you some examples of USLs groups by domain
  • If you are in “USL” the search for IEML expressions (instead of natural language translations) is done by typing * at the beginning of the query
  • Type: choose “all”
  • Class: filters nouns verbs or auxiliaries
  • Cardinality: choose “root” paradigms (big tables, or multi-tables paradigms), or the (small) tables, or singular = individual words. It is recommended to explore the dictionary by “roots”
  • When you click on a search result, the corresponding paradigm appears on the right.
  • The right panel present certain relations according to the selected words.

IEML is patented (provisional: US 63/124,924) and belongs to INTLEKT Metadata Inc.

More than 60% of the human population is connected to the Internet, most sectors of activity have switched to digital and software drives innovation. Yet Internet standards and protocols were invented at a time when less than one percent of the population was connected. It is time to use the data flows, the available computing power and the possibilities of interactive communication for human development… and to solve the serious problems we are facing. That is why I will launch soon a major international project – comparable to the construction of a cyclotron or a voyage to Mars – aiming at an augmentation of the Internet in the service of collective intelligence.

This project has several interrelated objectives: 

  • Decompartmentalize digital memory and ensure its semantic (linguistic, cultural and disciplinary) interoperability.
  • Open up indexing modes and maximize the diversity of interpretations of the digital memory.
  • Make communication between machines, but also between humans and machines, more fluid in order to enforce our collective mastery of the Internet of Things, intelligent cities, robots, autonomous vehicles, etc.
  • Establish new forms of modeling and reflexive observation of human collective intelligence on the basis of our common memory.

IEML

The technical foundation of this project is IEML (Information Economy MetaLanguage), a semantic metadata system that I invented with support from the Canadian federal government. IEML has :

  • the expressive power of a natural language, 
  • the syntax of a regular language, 
  • calculable semantics aligned with its syntax.

IEML is exported in RDF and is based on Web standards. IEML concepts are called USLs (Uniform Semantic Locators). They can be read and translated into any natural language. Semantic ontologies – sets of USLs linked by a network of relationships – are conceptually interoperable by design. IEML establishes a virtual knowledge base that feeds both automatic reasoning and statistical calculations. In short, IEML fulfills the promise of the Semantic Web through its computable meaning and interoperable ontologies.

For a short description of the IEML grammar, click here.

Intlekt

The URLs system and the http standard only become useful through a browser. Similarly, the new IEML-based semantic addressing system for the Internet requires a special application, let’s call it INTLEKT for the moment. It is a collaborative and distributed platform that supports concept editing, data curation and new forms of search, data mining and data visualization. 

Intlekt empowers the edition and publishing of semantic ontologies – sets of linked concepts – related to a field of practice or knowledge. These ontologies can be original or translate existing semantic metadata such as: thesauri, documentary languages, ontologies, SKOS taxonomies, folksonomies, sets of tags or hashtags, keywords, column and row headings, etc. Published semantic ontologies augment a dictionary of concepts, which can be considered as an open meta-ontology

Intlekt is also a data curation tool. It enables editing, indexing in IEML and publishing data collections that feed a common knowledge base. Eventually, statistical algorithms will be used to automate the semantic indexing of data.

Finally, Intlekt exploits the properties of IEML to allow new forms of search, automatic reasoning and simulation of complex systems.

Special applications can be imagined in many areas, like:

  • the preservation of cultural heritage, 
  • research in the humanities (digital humanities), 
  • education and training
  • public health, 
  • informed democratic deliberation, 
  • commercial transactions, 
  • smart contracts, 
  • the Internet of things, 
  • and so on…

And now, what?

Where do we stand on this project in the summer of 2020? After many tests over several years, IEML’s grammar has stabilized, as well as the base of elementary concepts of about 3000 units, which enables any complex concept to be built at will. I tested positively the expressive possibilities of the language in several fields of humanities and earth sciences. Moreover, to obtain a version of Intlekt that enables the semantic ontology editing, data curation and data mining functions described above, a team of several programmers working for one year is needed.

Come and join us!

For more information: https://intlekt.io/

IEML (the Information Economy Meta Language) has four main directions of research and development in 2019: in mathematics, data science, linguistics and software development. This blog entry reviews them successively.

1- A mathematical research program

I will give here a philosophical description of the structure of IEML, the purpose of the mathematical research to come being to give a formal description and to draw from this formalisation as much useful information as possible on the calculation of relationships, distances, proximities, similarities, analogies, classes and others… as well as on the complexity of these calculations. I had already produced a formalization document in 2015 with the help of Andrew Roczniak, PhD, but this document is now (2019) overtaken by the evolution of the IEML language. The Brazilian physicist Wilson Simeoni Junior has volunteered to lead this research sub-program.

IEML Topos

The “topos” is a structure that was identified by the great mathematician Alexander Grothendieck, who “is considered as the re-founder of algebraic geometry and, as such, as one of the greatest mathematicians of the 20th century” (see Wikipedia).

Without going into technical details, a topos is a bi-directional relationship between, on the one hand, an algebraic structure, usually a “category” (intuitively a group of transformations of transformation groups) and, on the other hand, a spatial structure, which is geometric or topological. 

In IEML, thanks to a normalization of the notation, each expression of the language corresponds to an algebraic variable and only one. Symmetrically, each algebraic variable corresponds to one linguistic expression and only one. 

Topologically, each variable in IEML algebra (i.e. each expression of the language) corresponds to a “point”. But these points are arranged in different nested recursive complexity scales: primitive variables, morphemes of different layers, characters, words, sentences, super-phrases and texts. However, from the level of the morpheme, the internal structure of each point – which comes from the function(s) that generated the point – automatically determines all the semantic relationships that this point has with the other points, and these relationships are modelled as connections. There are obviously a large number of connection types, some very general (is contained in, has an intersection with, has an analogy with…) others more precise (is an instrument of, contradicts X, is logically compatible with, etc.).

The topos that match all the expressions of the IEML language with all the semantic relationships between its expressions is called “The Semantic Sphere”.

Algebraic structure of IEML

In the case of IEML, the algebraic structure is reduced to 

  • 1. Six primitive variables 
  • 2. A non-commutative multiplication with three variables (substance, attribute and mode). The IEML multiplication is isomorphic to the triplet ” departure vertex, arrival vertex, edge ” which is used to describe the graphs.
  • 3. A commutative addition that creates a set of objects.

This algebraic structure is used to construct the following functions and levels of variables…

1. Functions using primitive variables, called “morpheme paradigms”, have as inputs morphemes at layer n and as outputs morphemes at layer n+1. Morpheme paradigms include additions, multiplications, constants and variables and are visually presented in the form of tables in which rows and columns correspond to certain constants.

2. “Character paradigms” are complex additive functions that take morphemes as inputs and characters as outputs. Character paradigms include a group of constant morphemes and several groups of variables. A character is composed of 1 to 5 morphemes arranged in IEML alphabetical order. (Characters may not include more than five morphemes for cognitive management reasons).

3. IEML characters are assembled into words (a substance character, an attribute character, a mode character) by means of a multiplicative function called a “word paradigm”. A word paradigm intersects a series of characters in substance and a series of characters in attribute. The modes are chosen from predefined auxiliary character paradigms, depending on whether the word is a noun, a verb or an auxiliary. Words express subjects, keywords or hashtags. A word can be composed of only one character.

4. Sentence building functions assemble words by means of multiplication and addition, with the necessary constraints to obtain grammatical trees. Mode words describe the grammatical/semantic relationships between substance words (roots) and attribute words (leaves). Sentences express facts, proposals or events; they can take on different pragmatic and logical values.

5. Super-sentences are generated by means of multiplication and addition of sentences, with constraints to obtain grammatical trees. Mode sentences express relationships between substance sentences and attribute sentences. Super-sentences express hypotheses, theories or narratives.

6. A USL (Uniform Semantic Locator) or IEML text is an addition (a set) of words, sentences and super-sentences. 

Topological structure of IEML: a semantic rhizome

Static

The philosophical notion of rhizome (a term borrowed from botany) was developed on a philosophical level by Deleuze and Guattari in the preface to Mille Plateaux (Minuit 1980). In this Deleuzo-Guattarian lineage, by rhizome I mean here a complex graph whose points or “vertices” are organized into several levels of complexity (see the algebraic structure) and whose connections intersect several regular structures such as series, tree, matrix and clique. In particular, it should be noted that some structures of the IEML rhizome combine hierarchical or genealogical relationships (in trees) with transversal or horizontal relationships between “leaves” at the same level, which therefore do not respect the “hierarchical ladder”. 

Dynamic

We can distinguish the abstract, or virtual, rhizomatic grid drawn by the grammar of the language (the sphere to be dug) and the actualisation of points and relationships by the users of the language (the dug sphere of chambers and galleries).  Characters, words, sentences, etc. are all chambers in the centre of a star of paths, and the generating functions establish galleries of “rhizomatic” relationships between them, as many paths for exploring the chambers and their contents. It is therefore the users, by creating their lexicons and using them to index their data, communicate and present themselves, who shape and grow the rhizome…

Depending on whether circuits are more or less used, on the quantity of data or on the strength of interactions, the rhizome undergoes – in addition to its topological transformations – various types of quantitative or metric transformations. 

* The point to remember is that IEML is a language with calculable semantics because it is also an algebra (in the broad sense) and a complex topological space. 

* In the long term, IEML will be able to serve as a semantic coordinate system for the information world at large.

2 A research program in data science

The person in charge of the data science research sub-program is the software engineer (Eng. ENSIMAG, France) Louis van Beurden, who holds also a master’s degree in data science and machine translation from the University of Montréal, Canada. Louis is planning to complete a PhD in computer science in order to test the hypothesis that, from a data science perspective, a semantic metadata system in IEML is more efficient than a semantic metadata system in natural language and phonetic writing. This doctoral research will make it possible to implement phases A and B of the program below and to carry out our first experiment.

Background information

The basic cycle in data science can be schematized according to the following loop:

  • 1. selection of raw data,
  • 2. pre-processing, i.e. cleaning data and metadata imposition (cataloguing and categorization) to facilitate the exploitation of the results by human users,
  • 3. statistical processing,
  • 4. visual and interactive presentation of results,
  • 5. exploitation of the results by human users (interpretation, storytelling) and feedback on steps 1, 2, 3

Biases or poor quality of results may have several causes, but often come from poor pre-treatment. According to the old computer adage “garbage in, garbage out“, it is the professional responsibility of the data-scientists to ensure the quality of the input data and therefore not to neglect the pre-processing phase where this data is organized using metadata.

Two types of metadata can be distinguished: 1) semantic metadata, which describes the content of documents or datasets, and 2) ordinary metadata, which describes authors, creation dates, file types, etc. Let us call “semantic pre-processing” the imposition of semantic metadata on data.

Hypothesis

Since IEML is a univocal language and the semantic relationships between morphemes, words, sentences, etc. are mathematically computable, we assume that a semantic metadata system in IEML is more efficient than a semantic metadata system in natural language and phonetic writing. Of course, the efficiency in question is related to a particular task: search, data analysis, knowledge extraction from data, machine learning, etc.

In other words, compared to a “tokenization” of semantic metadata in phonetic writing noting a natural language, a “tokenization” of semantic metadata in IEML would ensure better processing, better presentation of results to the user and better exploitation of results. In addition, semantic metadata in IEML would allow datasets that use different languages, classification systems or ontologies to be de-compartmentalized, merged and compared.

Design of the first experience

The ideal way to do an experiment is to consider a multi-variable system and transform only one of the system variables, all other things being equal. In our case, it is only the semantic metadata system that must vary. This will make it easy to compare the system’s performance with one (phonetic tokens) or the other (semantic tokens) of the semantic metadata systems.

  • – The dataset of our first experience encompasses all the articles of the Sens Public scientific journal.
  • – Our ordinary metadata are the author, publication date, etc.
  • – Our semantic metadata describe the content of articles.
  •     – In phonetic tokens, using RAMEAU categories, keywords and summaries,
  •     – In IEML tokens by translating phonetic tokens.
  • – Our processes are “big data” algorithms traditionally used in natural language processing 
  •     – An algorithm for calculating the co-occurrences of keywords.
  •     – A TF-IDF (Term Frequency / Inverse Document Frequency) algorithm that works from a word / document matrix.
  •     – A clustering algorithm based on “word embeddings” of keywords in articles (documents are represented by vectors, in a space with as many dimensions as words).
  • – A user interface will offer a certain way to access the database. This interface will be obviously adapted to the user’s task (which remains to be chosen, but could be of the “data analytics” type).
  • Result 1 corresponds to the execution of the “machine task”, i.e. the establishment of a connection network on the articles (relationships, proximities, groupings, etc.). We’ll have to compare….
  •     – result 1.1 based on the use of phonetic tokens with 
  •     – result 1.2 based on the use of IEML tokens.
  • Result 2 corresponds to the execution of the selected user-task (data analytics, navigation, search, etc.). We’ll have to compare….
  •     – result 2.1, based on the use of phonetic tokens, with 
  •     – result 2.2, based on the use of IEML tokens.

Step A: First indexing of a database in IEML

Reminder: the data are the articles of the scientific journal, the semantic metadata are the categories, keywords and summaries of the articles. From the categories, keywords and article summaries, a glossary of the knowledge area covered by the journal is created, or a sub-domain if it turns out that the task is too difficult. It should be noted that in 2019 we do not yet have the software tools to create IEML sentences and super-phrases that allow us to express facts, proposals, theories, narratives, hypotheses, etc. Phrases and super-phrases, perhaps accessible in a year or two, will therefore have to wait for a later phase of the research.

The creation of the glossary will be the work of a project community, linked to the editors of Sens-Public magazine and the Canada Research Chair in Digital Writing (led by Prof. Marcello Vitali-Rosati) at the Université de Montréal (Digital Humanities). Pierre Lévy will accompany this community and help it to identify the constants and variables of its lexicon. One of the auxiliary goals of the research is to verify whether motivated communities can appropriate IEML to categorize their data. Once we are satisfied with the IEML indexing of the article database, we will proceed to the next step.

Step B: First experimental test

  • 1. The test is determined to measure the difference between results based on phonetic tokens and results based on IEML tokens. 
  • 2. All data processing operations are carried out on the data.
  • 3. The results (machine tasks and user tasks) are compared with both types of tokens.

The experiment can eventually be repeated iteratively with minor modifications until satisfactory results are achieved.

If the hypothesis is confirmed, we proceed to the next step

Step C: Towards an automation of semantic pre-processing in IEML.

If the superior efficiency of IEML tokens for semantic metadata is demonstrated, then there will be a strong interest in maximizing the automation of IEML semantic pre-processing

The algorithms used in our experiment are themselves powerful tools for data pre-processing, they can be used, according to methods to be developed, to partially automate semantic indexing in IEML. The “word embeddings” will make it possible to study how IEML words are correlated with the natural language lexical statistics of the articles and to detect anomalies. For example, we will check if similar USLs (a USL is an IEML text) point to very different texts or if very different texts have similar USLs. 

Finally, methods will be developed to use deep learning algorithms to automatically index datasets in IEML.

Step D: Research and development perspective in Semantic Machine Learning

If step C provides the expected results, i.e. methods using AI to automate the indexing of data in IEML, then big data indexed in IEML will be available.  As progress will be made, semantic metadata may become increasingly similar to textual data (summary of sections, paragraphs, sentences, etc.) until translation into IEML is achieved, which remains a distant objective.

The data indexed in IEML could then be used to train artificial intelligence algorithms. The hypothesis that machines learn more easily when data is categorized in IEML could easily be validated by experiments of the same type as described above, by comparing the results obtained from training data indexed in IEML and the results obtained from the same data indexed in natural languages.

This last step paves the way for a better integration of statistical AI and symbolic AI (based on facts and rules, which can be expressed in IEML).

3 A research program in linguistics, humanities and social sciences

Introduction

The semiotic and linguistic development program has two interdependent components:

1. The development of the IEML metalanguage

2. The development of translation systems and bridges between IEML and other sign systems, in particular… 

  •     – natural languages,
  •     – logical formalisms,
  •     – pragmatic “language games” and games in general,
  •     – iconic languages,
  •     – artistic languages, etc.

This research and development agenda, particularly in its linguistic dimension, is important for the digital humanities. Indeed, IEML can serve as a system of semantic coordinates of the cultural universe, thus allowing the humanities to cross a threshold of scientific maturity that would bring their epistemological status closer to that of the natural sciences. Using IEML to index data and to formulate assumptions would result in….

  • (1) a de-silo of databases used by researchers in the social sciences and humanities, which would allow for the sharing and comparison of categorization systems and interpretive assumptions;
  • (2) an improved analysis of data.
  • (3) The ultimate perspective, set out in the article “The Role of the Digital Humanities in the New Political Space” (http://sens-public.org/article1369.html in French), is to aim for a reflective collective intelligence of the social sciences and humanities research community. 

But IEML’s research program in the perspective of the digital humanities – as well as its research program in data science – requires a living and dynamic semiotic and linguistic development program, some aspects of which I will outline here.

IEML and the Meaning-Text Theory

IEML’s linguistic research program is very much based on the Meaning-Text theory developed by Igor Melchuk and his school. “The main principle of this theory is to develop formal and descriptive representations of natural languages that can serve as a reliable and convenient basis for the construction of Meaning-Text models, descriptions that can be adapted to all languages, and therefore universal. ”(Excerpt translated from the Wikipedia article on Igor Melchuk). Dictionaries developed by linguists in this field connect words according to universal “lexical functions” identified through the analysis of many languages. These lexical functions have been formally transposed into the very structure of IEML (See the IEML Glossary Creation Guide) so that the IEML dictionary can be organized by the same tools (e.g. Spiderlex) as those of the Meaning-Text Theory research network. Conversely, IEML could be used as a pivot language – or concept description language – *between* the natural language dictionaries developed by the network of researchers skilled in Meaning-Text theory.

Construction of specialized lexicons in the humanities and social sciences

A significant part of the IEML lexicon will be produced by communities having decided to use IEML to mark out their particular areas of knowledge, competence or interaction. Our research in specialized lexicon construction aims to develop the best methods to help expert communities produce IEML lexicons. One of the approaches consists in identifying the “conceptual skeleton” of a domain, namely its main constants in terms of character paradigms and word paradigms. 

The first experimentation of this type of collaborative construction of specialized lexicons by experts will be conducted by Pierre Lévy in collaboration with the editorial team of the Sens Public scientific journal and the Canada Research Chair in Digital Textualities at the University of Montréal (led by Prof. Marcello Vitali-Rosati). Based on a determination of their economic and social importance, other specialized glossaries can be constructed, for example on the theme of professional skills, e-learning resources, public health prevention, etc.

Ultimately, the “digital humanities” branch of IEML will need to collaboratively develop a conceptual lexicon of the humanities to be used for the indexation of books and articles, but also chapters, sections and comments in documents. The same glossary should also facilitate data navigation and analysis. There is a whole program of development in digital library science here. I would particularly like to focus on the human sciences because the natural sciences have already developed a formal vocabulary that is already consensual.

Construction of logical, pragmatic and narrative character-tools

When we’ll have a sentence and super-phrase editor, it is planned to establish a correspondence between IEML – on the one hand – and propositional calculus and first order logics – on the other hand –. This will be done by specifying special character-tools to implement logical functions. Particular attention will be paid to formalizing the definition of rules and the declaration that “facts” are true in IEML. It should be noted in passing that, in IEML, grammatical expressions represent classes, sets or categories, but that logical individuals (proper names, numbers, etc.) or instances of classes are represented by “literals” expressed in ordinary characters (phonetic alphabets, Chinese characters, Arabic numbers, URLs, etc.).

In anticipation of practical use in communication, games, commerce, law (smart contracts), chatbots, robots, the Internet of Things, etc., we will develop a range of character-tools with illocutionary force such as “I offer”, “I buy”, “I quote”, “I give an instruction”, etc.

Finally, we will making it easier for authors of super-sentences by developing a range of character-tools implementing “narrative functions”.

4 A software development program

A software environment for the development and public use of the IEML language

Logically, the first multi-user IEML application will be dedicated to the development of the language itself. This application is composed of the following three web modules.

  • 1. A morpheme editor that also allows you to navigate in the morphemes database, or “dictionary”.
  • 2. A character and word editor that also allows navigation in the “lexicon”.
  • 3. A navigation and reading tool in the IEML library as a whole, or “IEML database” that brings together the dictionary and lexicon, with translations, synonyms and comments in French and English for the moment.

The IEML database is a “Git” database and is currently hosted by GitHub. Indeed, a Git database makes it possible to record successive versions of the language, as well as to monitor and model its growth. It also allows large-scale collaboration among teams capable of developing specific branches of the lexicon independently and then integrating them into the main branch after discussion, as is done in the collaborative development of large software projects. As soon as a sub-lexicon is integrated into the main branch of the Git database, it becomes a “common” usable by everyone (according to the latest General Public License version.

Morpheme and word editors are actually “Git clients” that feed the IEML database. A first version of this collaborative read-write environment should be available in the fall of 2019 and then tested by real users: the editors of the Scientific Journal “Sens Public” as well as other participants in the University of Montréal’s IEML seminar.

The following versions of the IEML read/write environment should allow the editing of sentences and texts as well as literals that are logical individuals not translated into IEML, such as proper names, numbers, URLs, etc.

A social medium for collaborative knowledge management

A large number of applications using IEML can be considered, both commercial and non-commercial. Among all these applications, one of them seems to be particularly aligned with the public interest: a social medium dedicated to collaborative knowledge and skills management. This new “place of knowledge” could allow the online convergence of the missions of… 

  • – museums and libraries, 
  • – schools and universities, 
  • – companies and administrations (with regard to their knowledge creation and management dimension), 
  • – smart cities, employment agencies, civil society networks, NGO, associations, etc.

According to its general philosophy, such a social medium should…

  • – be supported by an intrinsically distributed platform, 
  • – have the simplicity – or the economy of means – of Twitter,
  • – ensure the sovereignty of users over their data,
  • – promote collaborative processes.

The main functions performed by this social medium would be:

  • – data curation (reference and categorization of web pages, edition of resource collections), 
  • – teaching offers and learning demands,
  • – offers and demands for skills, or employment market.

IEML would serve as a common language for

  • – data categorization, 
  • – description of the knowledge and skills, 
  • – the expression of acts within the social medium (supply, demand, consent, publish, etc.)
  • – addressing users through their knowledge and skills.

Three levels of meaning would thus be formalized in this medium.

  • (1) The linguistic level in IEML  – including lexical and narrative functions – formalizes what is spoken about (lexicon) and what is said (sentences and super-phrases).
  • – (2) The logical – or referential – level adds to the linguistic level… 
  •     – logical functions (first order logic and propositional logic) expressed in IEML using logical character-tools,
  •     – the ability of pointing to references (literals, document URLs, datasets, etc.),
  •     – the means to express facts and rules in IEML and thus to feed inference engines.
  • – (3) The pragmatic level adds illocutionary functions and users to the linguistic and logical levels.
  •     – Illocutionary functions (thanks to pragmatic character-tools) allow the expression of conventional acts and rules (such as “game” rules). 
  •     – The pragmatic level obviously requires the consideration of players or users, as well as user groups.
  •     – It should be noted that there is no formal difference between logical inference and pragmatic inference but only a difference in use, one aiming at the truth of propositions according to referred states of things, the other calculating the rights, obligations, gains, etc. of users according to their actions and the rules of the games they play.

The semantic profiles of users and datasets will be arranged according to the three levels that have just been explained. The “place of knowledge” could be enhanced by the use of tokens or crypto-currencies to reward participation in collective intelligence. If successful, this type of medium could be generalized to other areas such as health, democratic governance, trade, etc.