Archives for category: Sphère sémantique

Aujourd’hui, le monde entier se précipite vers l’IA statistique, les modèles neuronaux et/ou l’IA générative. Mais nous savons que, bien que ces modèles soient utiles, nous avons toujours besoin de modèles symboliques ou, si vous préférez, de graphes de connaissances, en particulier dans le domaine de la gestion des connaissances.

Mais pourquoi exactement avons-nous encore besoin de modèles symboliques en plus des modèles neuronaux ? Parce que les modèles symboliques sont capables de représenter la connaissance de manière explicite, ce qui comporte beaucoup d’avantages, notamment la transparence et l’explicabilité. Dans cet exposé, je vais plaider en faveur de l’interopérabilité sémantique (ou conceptuelle) entre les graphes de connaissances, et je présenterai IEML, un langage que j’ai inventé à la Chaire de Recherche du Canada en intelligence collective (2002-2016) avec l’aide de mon équipe d’ingénieurs.

Figure 1

Si vous êtes familier avec le domaine de la gestion des connaissances, vous savez qu’il existe une dialectique entre les connaissances implicites (en bleu sur la Figure 1) et les connaissances explicites (en rouge sur la Figure 1).

Il existe actuellement deux façons principales de traiter les données pour la gestion des connaissances.

  • Via des modèles neuronaux, basés principalement sur les statistiques, pour l’aide à la décision, la compréhension automatique et la génération de données.
  • Via des modèles symboliques, basés sur la logique et la sémantique, pour l’aide à la décision et la recherche avancée.

Ces deux approches sont généralement distinctes et correspondent à deux cultures d’ingénieurs différentes. En raison de leurs avantages et de leurs inconvénients, les gens essaient de les combiner.

Clarifions maintenant la différence entre les modèles ” neuronaux ” et ” symboliques ” et comparons-les à la cognition neuronale et symbolique chez les êtres humains.

Le grand avantage des modèles neuronaux est leur capacité à synthétiser et à mobiliser la mémoire numérique “juste à temps”, ou “à la demande”, et à le faire automatiquement, ce qui est impossible pour un cerveau humain. Mais leur processus de reconnaissance et de génération de données est statistique, ce qui signifie qu’ils ne peuvent pas organiser un monde, ils ne maîtrisent pas la conservation des objets, ils n’ont pas de compréhension du temps et de la causalité, ou de l’espace et de la géométrie. Ils ne peuvent pas toujours reconnaître les transformations d’images d’un même objet comme le font les êtres vivants.

En revanche, les neurones vivants peuvent faire des choses que les neurones formels actuels ne peuvent pas faire. Les animaux, même sans modèles symboliques, avec leurs neurones naturels, sont capables de modéliser le monde, d’utiliser des concepts, ils conservent les objets malgré leurs transformations, ils appréhendent le temps, la causalité, l’espace, etc. Et les cerveaux humains ont la capacité de faire fonctionner des systèmes symboliques, comme le langage.

Quels sont les aspects positifs des modèles symboliques de l’IA, ou graphes de connaissances? 

  • Il s’agit de modèles explicites du monde, plus précisément d’un monde pratique local. 
  • Ils sont en principe auto-explicatifs, si le modèle n’est pas trop complexe.
  • ils ont de fortes capacités de raisonnement. 

Tout cela les rend plutôt fiables, comparativement aux modèles neuronaux, qui sont probabilistes. Cependant, les modèles symboliques actuels présentent deux faiblesses.

  • Leur conception prend du temps. Ils sont coûteux en termes de main-d’œuvre spécialisée.
  • Ils n’ont ni “conservation des concepts” ni  “conservation des relations” entre les ontologies ou domaines. Dans un domaine particulier donné, chaque concept et chaque relation doivent être définis logiquement un par un.

S’il existe une interopérabilité au niveau des formats de fichiers pour les métadonnées sémantiques (ou les systèmes de classification), cette interopérabilité n’existe pas au niveau sémantique des concepts, ce qui cloisonne les graphes de connaissances, et par conséquent l’intelligence collective.

En revanche, dans la vie réelle, des humains issus de métiers ou de domaines de connaissances différents se comprennent en partageant la même langue naturelle. En effet, dans la cognition humaine, un concept est déterminé par un réseau de relations inhérent aux langues naturelles.

Mais qu’est-ce que j’entends par “le sens d’un concept est déterminé par un réseau de relations inhérent aux langues naturelles” ? Quel est ce réseau de relations ? Et pourquoi est-ce que je le souligne dans cet article ? Parce que je crois que l’IA symbolique actuelle passe à côté de l’aspect sémantique des langues. Faisons donc un peu de linguistique pour mieux comprendre.

Figure 2

Toute langue naturelle tisse trois types de relations : l’interdéfinition, la composition et la substitution.

  • Tout d’abord, le sens de chaque mot est défini par une phrase qui implique d’autres mots, eux-mêmes définis de la même manière. Un dictionnaire englobe notamment une inter-définition circulaire ou enchevêtrée de concepts.
  • Ensuite, grâce aux règles de grammaire, on peut composer des phrases originales et comprendre de nouveaux sens.
  • Enfin, tous les mots d’une phrase ne peuvent pas être remplacés par n’importe quel autre ; il existe des règles pour les substitutions possibles qui contribuent au sens des mots et des phrases.

Vous comprenez la phrase “Je peins la petite pièce en bleu” (voir Figure 2) parce que vous connaissez les définitions de chaque mot, vous connaissez les règles grammaticales qui donnent à chaque mot son rôle dans la phrase, et vous savez par quoi les mots actuels pourraient être remplacés. C’est ce qu’on appelle la sémantique linguistique.

Il n’est pas nécessaire de définir une à une ces relations d’inter-définition, de composition et de substitution entre concepts chaque fois que l’on parle de quelque chose. Tout cela est inclus dans la langue. Malheureusement, nous ne disposons d’aucune de ces fonctions sémantiques lorsque nous construisons les graphes de connaissances actuels. Et c’est là qu’IEML pourrait contribuer à améliorer les méthodes de l’IA symbolique et de la gestion des connaissances.

Pour comprendre mon argumentation, il est important de faire la distinction entre la sémantique linguistique et la sémantique référentielle. La sémantique linguistique concerne les relations entre les concepts. La sémantique référentielle concerne les relations entre les propositions et les états de choses ou entre les noms propres et les individus.

Si la sémantique linguistique tisse des relations entre les concepts, pourquoi ne pouvons-nous pas utiliser les langues naturelles dans les modèles symboliques ? Nous connaissons tous la réponse. Les langues naturelles sont ambiguës (grammaticalement et lexicalement) et les machines ne peuvent pas désambiguïser le sens en fonction du contexte. Dans l’IA symbolique actuelle, nous ne pouvons pas compter sur le langage naturel pour susciter organiquement des relations sémantiques.

Alors, comment construit-on un modèle symbolique aujourd’hui ?

  • Pour définir les concepts, nous devons les relier à des URI (Uniform Resource Identifier) ou à des pages web, selon le modèle de la sémantique référentielle.
  • Mais comme la sémantique référentielle est insuffisante pour décrire un réseau de relations, au lieu de s’appuyer sur la sémantique linguistique, il faut imposer des relations sémantiques aux concepts un par un.

C’est la raison pour laquelle la conception des graphes de connaissances prend tant de temps et c’est aussi pourquoi il n’existe pas d’interopérabilité sémantique générale des graphes de connaissances entre les ontologies ou les domaines de connaissance. Encore une fois, je parle ici d’interopérabilité au niveau sémantique ou conceptuel et non au niveau du format.

Afin de pallier les insuffisances des modèles symboliques actuels, j’ai construit un métalangage qui présente les mêmes avantages que les langues naturelles, à savoir un mécanisme inhérent de construction de réseaux sémantiques, mais qui n’a pas leurs inconvénients, puisqu’il est sans ambiguïté et calculable.

IEML (le méta-langage de l’économie de l’information), est un métalangage sémantique non ambigu et calculable qui inclut un système d’inter-définition, de composition et de substitution de concepts.

L’objectif de cette invention est de faciliter la conception de graphes de connaissances et d’ontologies, d’assurer leur interopérabilité sémantique et de favoriser leur conception collaborative. La vision qui inspire IEML est une intelligence collective à support numérique et augmentée par l’IA.

IEML a le pouvoir d’expression d’un langage naturel et possède une structure algébrique qui lui permet d’être entièrement calculable. IEML n’est pas seulement calculable dans sa dimension syntaxique, mais aussi dans sa dimension sémantique linguistique, car ses relations sémantiques (en particulier les relations de composition et de substitution) sont des fonctions calculables de ses relations syntaxiques. Il n’existe aujourd’hui aucun autre système symbolique ayant ces propriétés.

IEML dispose d’une grammaire entièrement régulière et récursive ainsi que d’un dictionnaire de trois mille mots organisés en paradigmes (systèmes de substitution) permettant la construction (récursive et grammaticale) de n’importe quel concept. En somme, tout concept peut être construit à partir d’un petit nombre de briques lexicales selon des règles de composition universelles simples.

Comme chaque concept est automatiquement défini par des relations de composition et de substitution avec d’autres concepts et par des explications impliquant les concepts de base du dictionnaire et conformes à la grammaire IEML, IEML est son propre métalangage. Il peut traduire n’importe quelle langue naturelle. Le dictionnaire en IEML est actuellement traduit en français et en anglais.

 IEML permet de coupler les modèles symboliques et neuronaux, et de surmonter leurs limitations et séparations dans une architecture innovante et intégrée.

Figure 3

La diapositive ci-dessus (Figure 3) présente la nouvelle architecture sémantique pour la gestion des connaissances qu’IEML rend possible, une architecture qui conjoint les modèles neuronaux et symboliques.

La seule chose qui puisse générer tous les concepts dont nous avons besoin pour exprimer la complexité des domaines de connaissance, tout en maintenant la compréhension mutuelle, est une langue. Mais les langues naturelles sont irrégulières et ambiguës, et leur sémantique ne peut être calculée. IEML étant un langage algébrique univoque et formel (contrairement aux langues naturelles), il peut exprimer tous les concepts possibles (comme dans les langues naturelles), et ses relations sémantiques sont densément tissées grâce à un mécanisme intégré. C’est pourquoi nous pouvons utiliser IEML comme un langage de métadonnées sémantiques pratique pour exprimer n’importe quel modèle symbolique ET nous pouvons le faire de manière interopérable. Encore une fois, je parle d’interopérabilité conceptuelle. En IEML, tous les modèles symboliques peuvent échanger des modules de connaissance et le raisonnement transversal aux ontologies devient la norme.

Comment les modèles neuronaux sont-ils utilisés dans cette nouvelle architecture ? Les modèles neuronaux traduisent automatiquement le langage naturel en IEML, donc pas de travail ou d’apprentissage supplémentaire pour le profane. Ils pourraient même aider à traduire des descriptions informelles en langage naturel en un modèle formel exprimé en IEML.

Les consignes (prompts) seraient exprimées en IEML en coulisse, de sorte que la génération de données soit mieux contrôlée.

Nous pourrions également utiliser des modèles neuronaux pour classer ou étiqueter automatiquement des données en IEML. Les étiquettes exprimées en IEML permettront un apprentissage automatique plus efficace, car les unités ou “tokens” pris en compte ne seraient plus des unités sonores – caractères, syllabes, mots – des langues naturelles, mais des concepts générés par une algèbre sémantique.

Quels seraient les avantages d’une architecture intégrée de gestion des connaissances utilisant IEML comme système de coordonnées sémantiques ?

  • Les modèles symboliques et neuronaux fonctionneraient ensemble au profit de la gestion des connaissances.
  • Un système de coordonnées sémantiques commun faciliterait la mutualisation des modèles et des données. Les modèles symboliques seraient interopérables et plus faciles à concevoir et à formaliser. Leur conception serait collaborative, y compris d’un domaine à l’autre. L’usage d’un métalangage sémantique comme IEML amélioreraient également la productivité intellectuelle grâce à une automatisation partielle de la conceptualisation.
  • Les modèles neuronaux seraient basés sur des étiquettes codées en IEML et donc plus transparents, explicables et fiables. L’avantage serait non seulement technique, mais aussi d’ordre éthique.
  • Enfin, cette architecture favoriserait la diversité et la liberté de création, puisque les réseaux de concepts, ou graphes de connaissances, formulés en IEML peuvent être différenciés et complexifiés à volonté.

RÉFÉRENCES POUR IEML

Scientific paper (English) in Collective Intelligence Journal,2023 https://journals.sagepub.com/doi/full/10.1177/26339137231207634

Article scientifique (Français) in Humanités numériques, 2023 https://journals.openedition.org/revuehn/3836

Website / site web: https://intlekt.io/

Book: The Semantic Sphere, Computation, Cognition and Information Economy. Wiley, 2011

Livre: La Sphère sémantique. Computation, cognition, économie de l’information. Lavoisier, 2011

Première réflexion au sujet d’un IEML_GPT à venir.

Rappel : ” Je travaille dans une perspective d’intelligence artificielle dédiée à l’augmentation de l’intelligence collective. J’ai conçu IEML pour servir de protocole sémantique, permettant la communication des significations et des connaissances dans la mémoire numérique, tout en optimisant l’apprentissage automatique et le raisonnement automatique.”

Pour tout savoir sur IEML, l’article scientifique définitif : https://journals.sagepub.com/doi/10.1177/26339137231207634

L’article scientifique sur IEML en français:
https://journals.openedition.org/revuehn/3836

Au sujet du GPT Builder : https://help.openai.com/en/articles/8554397-creating-a-gpt

Le Dictionnaire d’IEML

La Grammaire d’IEML

VISION

Imaginons un dispositif destiné au partage des connaissances et qui tire le maximum des possibilités techniques contemporaines. Au cœur de ce dispositif évolue un écosystème ouvert de bases de connaissances catégorisées en IEML, qui émergent d’une multitude de communautés de recherche et de pratique. Entre ce noyau de bases de connaissances interopérables et les utilisateurs humains vivants s’interpose une interface neuronale (un écosystème de modèles) « no code » qui donne accès au contrôle, à l’alimentation, à l’exploration et à l’analyse des données. Tout se passe de manière intuitive et directe, selon les modalités sensorimotrices sélectionnées. C’est aussi par l’intermédiaire de ce giga-perceptron – un métavers immersif, social et génératif – que les collectifs échangent et discutent les modèles de données et réseaux sémantiques qui organisent leurs mémoires. En bonne gestion des connaissances, le nouveau dispositif de partage des savoirs favorise l’enregistrement des créations, accompagne les parcours d’apprentissage et présente les informations utiles aux acteurs engagés dans leurs pratiques. Le modèle IEML_GPT évoqué ici se veut un premier pas dans cette direction.

Maintenant que l’IA a été déchaînée sur Internet et qu’elle se couple aux médias sociaux, il nous faut apprivoiser et harnacher le monstre. Comment rendre l’IA raisonnable? Comment faire en sorte qu’elle « comprenne » ce qu’on lui dit et ce qu’elle nous dit, plutôt que de seulement calculer les probabilités d’apparition des mots à partir des données d’entraînement? Il faudrait lui apprendre le sens des mots et des phrases de telle sorte qu’elle (l’IA) se fasse une représentation abstraite *compréhensible pour elle* non seulement du monde physique (je laisse la tâche à Yann LeCun), mais aussi une représentation du monde humain et, plus généralement, du monde des idées.

En d’autres termes, comment greffer des capacités de codage et décodage symbolique sur un modèle neuronal qui ne peut au départ que reconnaître et générer des formes sensibles ou des agrégats de signifiants? Ce défi rappelle le processus de l’hominisation – quand des réseaux de neurones biologiques sont devenus capables de manipuler des systèmes symboliques – ce qui n’est pas pour me déplaire.

COMPRÉHENSION / CONNAISSANCE / INTEROPÉRABILITÉ

Comprendre une phrase, c’est l’inclure dans la dynamique auto-définitionnelle d’une langue, et cela avant même de saisir la référence extralinguistique de la phrase. L’IA comprendra ce qu’on lui dit lorsqu’elle sera capable de transformer automatiquement une chaîne de caractères en un réseau sémantique qui plonge dans la boucle auto-référentielle et auto-définitoire d’une langue. Le dictionnaire d’une langue, avec ses définitions, est un élément crucial de cette boucle. De même qu’une déduction représente en fin de compte une tautologie logique, le dictionnaire d’une langue exhibe une *tautologie sémantique*. C’est pourquoi IEML_GPT doit contenir un fichier avec le dictionnaire IEML-français-anglais (et peut-être d’autres langues) avec l’ensemble des relations entre les mots sous forme de phrases IEML. Le dictionnaire est une méta-ontologie qui est la même pour tous les utilisateurs. D’autres fichiers pourront contenir des modèles locaux ou ontologies correspondant aux écosystèmes de pratiques des communautés d’utilisateurs.
1) Compréhension linguistique. Les agents raisonnables sont capables de reconnaître et de générer des séquences de caractères IEML syntaxiquement valides, notamment au moyen d’un parseur. Ils ont une compréhension d’IEML : ils reconstituent les arbres syntagmatiques récursivement enchâssés et les relations entre concepts qui découlent du dictionnaire et des matrices paradigmatiques (ou groupes de substitution) qui organisent les concepts. Chaque concept (représenté par un mot ou une phrase IEML) se trouve ainsi au centre d’une étoile de relations syntaxiques et sémantiques.  
2) Connaissance des domaines pratiques. Les agents raisonnables sont animés par des bases de connaissances qui leur permettent de comprendre (localement) le monde où ils sont amenés à intervenir. Ils disposent de modèles (ontologies ou graphes de connaissances en IEML) des situations pratiques auxquelles leurs utilisateurs sont confrontés. Ils sont capables de raisonner à partir de ces modèles. Ils sont capables de rapporter les données qu’ils acquièrent et les questions qu’on leur pose à ces modèles.
3) Interopérabilité sémantique. Les agents raisonnables partagent la même langue (IEML) et donc se comprennent entre eux. Ils peuvent s’échanger des modèles ou des sous-modèles. Ils transforment les expressions en langues naturelles en IEML et les expressions IEML en langues naturelles : ils peuvent donc comprendre les humains et se faire comprendre d’eux.

TÂCHE 1 : LE DICTIONNAIRE

1.0 Je dispose déjà d’environ trois mille mots du dictionnaire organisés en paradigmes, d’une grammaire formelle, d’un parseur pour valider les phrases et de fonctions pour générer des paradigmes.

1.1 La première étape consiste à créer des concepts-phrases pour exprimer les *ensembles de mots* (familles lexicales et champs sémantiques) que sont les paradigmes, leurs colonnes, leurs rangées, etc. Appelons les concepts définissant ces ensembles de mots des « concepts lexicaux ». Les mots d’une même famille lexicale ont des traits syntaxiques communs et appartiennent souvent aux mêmes paradigmes-racines. Ils devront être créés systématiquement au moyen de paradigmes.

Il me faut trouver les moyens de générer les paradigmes de concepts lexicaux automatiquement en langue naturelle avec IEML_GPT plutôt qu’au moyen de l’éditeur actuel qui n’est pas facile à utiliser.

1.2 La seconde étape consiste à créer toutes les « propositions analytiques » qui définissent les mots du dictionnaire et explicitent leurs relations au moyen de mots et de concepts lexicaux. Par exemple : « Une montagne est plus grande qu’une colline » ; « La sociologie appartient aux sciences humaines ». Les propositions analytiques de ce type sont toujours vraies et définissent une méta-ontologie. Il faudra donc créer les paradigmes des *relations du dictionnaire*. Et les faire générer par IEML_GPT à partir d’instructions en langues naturelles.

1.3 Toutes les relations internes au dictionnaire, matérialisées par des liens hypertextes, sont créés par des phrases. Sur le plan de l’interface utilisateur, cela revient à créer des liens hypertexte internes au dictionnaire (entre les mots et les concepts lexicaux) de telle sorte que leurs relations grammaticales soient les plus claires possibles. Le document dictionnaire-hypertexte doit également être généré automatiquement par IEML_GPT.

Pour chaque mot, on obtiendra une liste (une « page? ») de phrases justes contenant le mot. Cette liste sera organisée par rôle grammatical : mot défini en rôle de racine, mot défini en rôle d’objet, etc.

Ces phrases serviront non seulement à définir les mots, mais aussi à commencer à accumuler des exemples, voire des données d’entraînement, avec la correspondance entre phrases IEML formelles et traductions littéraires en français et en anglais. En somme, le premier produit fini sera un dictionnaire complet, avec mots, concepts lexicaux et relations d’inter-définition sous forme hypertextuelle, le tout en IEML, anglais et français.

TÂCHE 2 : L’ÉDITEUR D’ONTOLOGIES

La tâche 1 aura permis de tester les meilleurs moyens de créer des paradigmes au moyen de consignes en langues naturelles, voire au moyen de formulaires permettant de mâcher le travail des concepteurs d’ontologies.

L’output de l’éditeur d’ontologie pourra être en RDF, JSON-LD, ou sous forme d’un document hypertexte. On peut aussi imaginer un document multimédia interactif : tables, arbres, réseaux de concepts explorables, illustrations verbales/sonores…

Idéalement, l’ontologie créée devrait contenir nativement un moteur d’inférence et donc supporter le raisonnement automatique. La propriété intellectuelle des créateurs d’ontologies devra être reconnue.

IEML_GPT sera capable de faire fonctionner n’importe quelle ontologie ou ensemble d’ontologies IEML.

TÂCHE 3 LA CATÉGORISATION AUTOMATIQUE

L’étape suivante devra viser la construction d’un outil intégré de catégorisation automatique de données en IEML. On donne à l’IA un jeu de données et une ontologie IEML (idéalement sous forme de fichier de référence) et le résultat est un ensemble de données catégorisées selon les termes de l’ontologie. L’exécution de la tâche 3 ouvre la voie à la création d’un écosystème de bases de connaissances tel que décrit dans la vision plus haut et la figure ci-dessous.

Toutes ces étapes devront être d’abord réalisées « en petit » (preuves de concepts et méthode agile) avant de l’être intégralement.

Cette entrée de blog propose le texte de ma conférence d’ouverture du Forum “Montréal Connecte” d’octobre 2023 consacré à l’intelligence collective à support numérique. Pour ceux qui préfèrent la vidéo, elle est là (ça commence à la vingtième minute) : https://www.youtube.com/watch?v=dTMU-j8nYio&t=7s

INTRODUCTION

Il y a maintenant presque 30 ans j’ai publié un livre consacré à l’intelligence collective à support numérique qui était, modestie à part, le premier à traiter ce sujet. Dans cet ouvrage, je prévoyais que l’Internet allait devenir le principal medium de communication, que cela provoquerait un changement de civilisation, et je disais que le meilleur usage que nous pouvions faire des technologies numériques était d’augmenter l’intelligence collective (et j’ajoute : une intelligence collective émergente, de type “bottom up”).

Le public de ma conférence d’ouverture à “Montreal Connecte” le 10 octobre 2023

A cette époque moins de 1% de l’humanité était branchée sur l’Internet alors que nous avons aujourd’hui – en 2023 – dépassé les deux tiers de la population mondiale connectée. Le changement de civilisation semble assez évident, bien qu’il faille attendre normalement plusieurs générations pour confirmer ce type de mutation, sans oublier que nous ne sommes qu’au commencement de la révolution numérique. Quant à l’augmentation de l’intelligence collective, de nombreux pas ont été franchis pour mettre les connaissances à la portée de tous (Wikipédia, le logiciel libre, les bibliothèques et les musées numérisés, les articles scientifiques en accès libre, certains aspects des médias sociaux, etc.). Mais beaucoup reste à faire. Utiliser l’intelligence artificielle pour augmenter l’intelligence collective semble une voie prometteuse, mais comment avancer dans cette direction ? Pour répondre à cette question de manière rigoureuse, je vais devoir définir préalablement quelques concepts.

QU’EST-CE QUE L’INTELLIGENCE?

Avant même de traiter la relation entre l’intelligence collective humaine et l’intelligence artificielle, essayons de définir en quelques mots l’intelligence en général et l’intelligence humaine en particulier. On dit souvent que l’intelligence est la capacité de résoudre des problèmes. A quoi je réponds: oui, mais c’est aussi et surtout la capacité de concevoir ou de construire des problèmes. Or si l’on a un problème c’est que l’on essaye d’obtenir un certain résultat et que l’on est confronté à une difficulté ou à un obstacle. Autrement dit, il y a un soi, un même, qu’on appellera l’« Un », qui est pourvu d’une logique interne, qui doit se maintenir dans certaines limites homéostatiques, qui a des finalités immanentes comme la reproduction, l’alimentation ou le développement et il y a un « Autre », une extériorité, qui obéit à une logique différente, qui se confond avec l’environnement ou qui appartient à l’environnement de l’Un et avec qui l’Un doit transiger. L’entité intelligente doit avoir une certaine autonomie, sinon elle ne serait pas intelligente du tout, mais cette autonomie n’est pas une autarcie ou une indépendance absolue car, dans ce cas, elle n’aurait aucun problème à résoudre et n’aurait pas besoin d’être intelligente.

Figure 1

Le rapport entre l’Un et l’Autre peut se ramener à une communication ou une interaction entre des entités qui sont régies par des manières d’être, des codes, des finalités hétérogènes et qui imposent donc un processus incertain et perfectible de codage et de décodage, processus qui engendre forcément des pertes, des créations et qui est soumis à toutes sortes de bruits et de parasitages.

L’entité intelligente n’est pas forcément un individu, ce peut être une société ou un écosystème. D’ailleurs, à l’analyse, on trouvera souvent à sa place un écosystème de molécules, de cellules, de neurones, de modules cognitifs, et ainsi de suite.  Quant au rapport entre l’Un et l’Autre, il constitue la maille élémentaire d’un réseau écosystémique quelconque. L’intelligence est le fait d’un écosystème en relation avec d’autres écosystèmes, elle est collective par nature. En somme le problème revient à optimiser la communication avec un Autre hétérogène en fonction des finalités de l’Un et la solution n’est autre que l’histoire effective de leurs relations.

LES  COUCHES DE COMPLEXITÉ DE L’INTELLIGENCE

Nous nous interrogeons principalement sur l’intelligence humaine augmentée par le numérique. N’oublions pas, cependant que notre intelligence repose sur des couches de complexité bien antérieures à l’apparition de l’espèce Homo sur la Terre. Les couches de complexité organique et animale sont toujours actives et indispensables à notre propre intelligence puisque nous sommes des êtres vivants pourvus d’un organisme et des animaux pourvus d’un système nerveux. C’est d’ailleurs pourquoi l’intelligence humaine est toujours incarnée et située.

Figure 2

Avec les organismes, viennent les propriétés bien connues d’autoreproduction, d’auto-référence et d’auto-réparation qui s’appuient sur une communication moléculaire et sans doute aussi des formes de communication électromagnétique complexe. Je ne développerai pas ici le thème de l’intelligence organique. Qu’il suffise de signaler que certains chercheurs en biologie et en écologie parlent désormais d’une “cognition végétale”.

Le développement du système nerveux découle des nécessités de la locomotion. Il s’agit d’abord d’assurer la boucle sensori-motrice. Au cours de l’évolution, cette boucle réflexe s’est complexifiée en simulation de l’environnement, évaluation de la situation et calcul décisionnel menant à l’action. L’intelligence animale résulte d’un pli de l’intelligence organique sur elle-même puisque le système nerveux cartographie et synthétise ce qui se passe dans l’organisme et le contrôle en retour. L’expérience phénoménale naît de cette réflexion.

En effet, le système nerveux produit une expérience phénoménale, ou conscience, qui se caractérise par l’intentionnalité, à savoir le fait de se rapporter à quelque chose qui n’est pas forcément l’animal lui-même. L’intelligence animale se représente l’autre. Elle est habitée par des images sensorielles multimodales (cénesthésie, toucher, goût, odorat, audition, vue), le plaisir et la douleur, les émotions, le cadrage spatio-temporel indispensable à la locomotion, le rapport à un territoire, une communication sociale souvent complexe. Il est clair que les animaux sont capables de reconnaître des proies, des prédateurs ou des partenaires sexuels et d’agir en conséquence. Ceci n’est possible que parce que des circuits neuronaux codent des schémas d’interaction ou concepts qui orientent, coordonnent et donnent sens à l’expérience phénoménale.

L’INTELLIGENCE HUMAINE

Je viens d’évoquer l’intelligence animale, qui repose sur le système nerveux. Comment caractériser l’intelligence humaine, supportée par le codage symbolique ? Les catégories générales, concepts et schémas d’interaction qui étaient simplement codés par des circuits neuronaux dans l’intelligence animale sont maintenant aussi représentés dans l’expérience phénoménale par l’intermédiaire des systèmes symboliques, dont le plus important est le langage. Des images signifiantes (paroles, écrits, représentations visuelles, gestes rituels…) représentent des concepts abstraits et ces concepts peuvent se combiner syntaxiquement pour former des architectures sémantiques complexes.

Figure 3

Dès lors, la plupart des dimensions de l’expérience phénoménale humaine  – y compris la sensori-motricité, l’affectivité, la spatio-temporalité et la mémoire – se projettent sur les systèmes symboliques et sont contrôlées en retour par la pensée symbolique. L’intelligence et la conscience humaines sont réflexives. En outre, pour que se forme cette pensée symbolique, il faut que des systèmes symboliques, qui sont toujours d’origine sociale, soient internalisés par les individus, deviennent partie intégrante de leur psychisme et s’inscrivent “en dur” dans leurs systèmes nerveux. Il en résulte que la communication symbolique embraye directement sur les systèmes nerveux humains. Nous ne pouvons pas ne pas comprendre ce que dit quelqu’un si nous connaissons la langue. Et les effets sur nos émotions et nos représentations mentales sont quasi inévitables. On pourrait également prendre l’exemple de la synchronisation psycho-physique et affective produite par la musique. C’est pourquoi la cohésion sociale humaine est au moins aussi forte que celle des animaux eusociaux comme les abeilles et les fourmis.

On remarquera que la figure 3, comme plusieurs des figures qui vont suivre, évoque un partage et une interdépendance entre virtuel et actuel. En 1995, j’ai publié un livre sur le virtuel qui était à la fois une méditation philosophique et anthropologique sur le concept de virtualité et un essai de mise au travail de ce concept sur des objets contemporains. Ma thèse philosophique est simple : ce qui n’est que possible, mais non réalisé, n’existe pas. Par contraste, ce qui n’est que virtuel mais non actualisé existe. Le virtuel, ce qui est en puissance, abstrait, immatériel, informationnel ou idéal pèse sur les situations, conditionne nos choix, provoque des effets et entre dans une dialectique ou dans un rapport d’interdépendance avec l’actuel.

L’ÉCOSYSTÈME DE L’INTELLIGENCE COLLECTIVE

La figure 4 ci-dessous cartographie les principaux pôles de l’intelligence collective humaine ou, si l’on préfère, la culture qui vient avec la pensée symbolique. Le diagramme est organisé par deux symétries qui se croisent. La première symétrie – binaire – est celle du virtuel et de l’actuel. L’actuel est plongé dans l’espace et le temps, il est plutôt concret alors que le virtuel est plutôt abstrait et n’a pas d’adresse spatio-temporelle. La seconde symétrie – ternaire –  est celle du signe, de l’être (l’interprétant) et de la chose (le référent), qui est inspiré du triangle sémiotique. La chose est ce que représente le signe et l’être est le sujet pour qui le signe représente la chose. A gauche (signe) se tiennent les systèmes symboliques, le savoir et la communication ; au milieu (être) se dressent la subjectivité, l’éthique et la société ; à droite (chose) s’étendent la capacité de faire, l’économie, la technique, la dimension physique. Il s’agit bien d’intelligence collective parce que les six sommets de l’hexagone sont interdépendants: les lignes vertes (les relations) sont aussi importantes, sinon plus, que les points où elles aboutissent.

Figure 4

Cette grille de lecture est valable pour la société en général mais également pour n’importe quelle communauté particulière. Au passage, virtuel, actuel, signe, être et chose sont (avec le vide) les primitives sémantiques du langage IEML (Information Economy MetaLanguage) que j’ai inventé et dont je dirai quelques mots plus bas.

Les six sommets de l’hexagone ne sont pas seulement les principaux points d’appui de l’intelligence collective humaine, ce sont aussi des univers de problèmes à résoudre:

  • problèmes de création de connaissance et d’apprentissage
  • problèmes de communication
  • problèmes de législation et d’éthique
  • problèmes sociaux et politiques
  • problèmes économiques
  • problèmes techniques, problèmes de santé et d’environnement.

Comment résoudre ces problèmes?

LE CYCLE AUTO-ORGANISATEUR DE L’INTELLIGENCE COLLECTIVE

La Figure 5 ci-dessous représente un cycle de résolution de problème en quatre étapes. Pour chacune des quatre phases du cycle (délibération, décision, action et observation), il existe un grand nombre de procédures différentes selon les traditions et les contextes où opère l’intelligence collective. Vous remarquerez que la délibération représente la phase virtuelle du cycle alors que l’action en représente la phase actuelle. Dans ce modèle, la décision fait la transition entre le virtuel et l’actuel tandis que l’observation passe de l’actuel au virtuel. Je voudrais insister ici sur deux concepts, la délibération et la mémoire, auxquels il arrive qu’on ne prête pas assez attention dans ce contexte.

Figure 5

Soulignons d’abord l’importance de la délibération, qui ne consiste pas seulement à discuter des meilleures solutions pour surmonter les obstacles mais aussi à construire et conceptualiser les problèmes de manière collaborative. Cette phase de conceptualisation va fortement impacter et même définir une bonne part des phases suivantes, elle va aussi déterminer l’organisation de la mémoire.

En effet, vous voyez sur le diagramme de la Figure 5 que la mémoire se trouve au centre du processus d’auto-organisation de l’intelligence collective. La mémoire partagée vient en appui de chacune des phases du cycle et contribue au maintien de la coordination, de la cohérence et de l’identité de l’intelligence collective. La communication indirecte par l’intermédiaire d’un environnement partagé est l’un des principaux mécanismes qui sous-tend l’intelligence collective des sociétés d’insectes, que l’on appelle la communication stigmergique dans le vocabulaire des éthologues. Mais alors que les insectes laissent généralement des traces de phéromones dans leurs environnements physiques pour guider l’action de leurs congénères, nous laissons des traces symboliques et cela non seulement dans le paysage mais aussi dans des dispositifs de mémoire spécialisés comme les archives, les bibliothèques et aujourd’hui les bases de données. Le problème de l’avenir de la mémoire numérique est devant nous : comment concevoir cette mémoire de telle sorte qu’elle soit la plus utile possible à notre intelligence collective?

VERS UNE INTELLIGENCE ARTIFICIELLE AU SERVICE DE L’INTELLIGENCE COLLECTIVE

Ayant acquis quelques notions de l’intelligence en général, des fondements de l’intelligence humaine et de la complexité de notre intelligence collective, nous pouvons maintenant nous interroger sur la relation de notre intelligence avec les machines.

Figure 6

La figure 6 propose une vue d’ensemble de notre situation. Au milieu, le « vivant » : les populations humaines, avec les corps actuels et les esprits virtuels des individus. Immédiatement au contact des individus, les machines matérielles (ou corps mécanique) du côté actuel et, du côté virtuel, les machines logicielles (ou esprit mécanique). Les machines matérielles jouent de plus en plus un rôle d’interface ou de medium entre nous et les écosystèmes terrestres. Quant aux machines logicielles, elles sont en train de devenir le principal intermédiaire – un médium encore une fois – entre les populations humaines et les écosystèmes d’idées avec lesquelles nous vivons en symbiose. Quant à la conscience collective, nous n’y sommes pas encore. Elle représente plus un horizon, une direction d’évolution à viser qu’une réalité. Il faut comprendre la Figure 6 en y ajoutant mentalement des boucles de rétroaction ou d’interdépendance entre les couches adjacentes, entre le virtuel et l’actuel, entre le mécanique et le vivant. Sur un plan éthique, on peut faire l’hypothèse que les collectivités humaines vivantes reçoivent les bienfaits des écosystèmes terrestres et des écosystèmes d’idées en proportion du travail et du soin qu’elles apportent à leur entretien.

L’AUTOMATISATION DE L’INTELLIGENCE

Effectuons un zoom avant sur notre environnement mécanique avec la Figure 7. Une machine est un dispositif technique construit par les humains, un automate qui bouge ou fonctionne “tout seul”. Aujourd’hui les deux types de machines – logicielles et matérielles – sont interdépendantes. Elles ne pourraient pas exister l’une sans l’autre et elles sont en principe contrôlées par les collectivités humaines dont elles augmentent les capacités physiques et mentales. Parce que la technique externalise, socialise et réifie les fonctions organiques et psychiques humaines elle peut parfois paraître autonome ou à risque de s’autonomiser, mais c’est une illusion d’optique. Derrière “la machine” il faut entrevoir l’intelligence collective et les rapports sociaux qu’elle réifie et mobilise.

Figure 7

Les machines mécaniques sont celles qui transforment le mouvement, à commencer par la voile, la roue, la poulie, le levier, les engrenages, les ressorts, etc. Citons comme exemples de machines purement mécaniques les moulins à eau ou à vent, les horloges classiques, les presses à imprimer de la Renaissance ou les premiers métiers à tisser.

Les machines énergétiques sont celles qui transforment l’énergie en impliquant de la chaleur ou de l’électricité. Citons les fours, les forges, les machines à vapeur, les moteurs à explosion, les moteurs électriques, et les procédés contemporains pour produire, transmettre et stocker l’électricité.

Quand aux machines électroniques, elles contrôlent l’énergie et la matière au niveau des champs électromagnétiques et des particules élémentaires et servent bien souvent à contrôler les machines de couches inférieures dont, par ailleurs, elles dépendent. Pour ce qui nous intéresse ici, ce sont principalement les centres de données (le “cloud”), les réseaux et les appareils qui sont directement au contact des utilisateurs finaux (le “edge”) tels qu’ordinateurs, téléphones, consoles de jeux, casques de réalité virtuelle et autres.

Abordons la partie virtuelle qui correspond à la mémoire partagée que nous avions mise au centre de notre description du cycle auto-organisateur de l’action collective. Si l’échange de messages point à point a toujours lieu, la majeure part de la communication sociale s’effectue désormais de manière stigmergique dans la mémoire numérique. Nous communiquons par l’intermédiaire de la masse océanique de données qui nous rassemble. Chaque lien que nous créons, chaque étiquette ou hashtag apposée sur une information, chaque acte d’évaluation ou d’approbation, chaque « j’aime », chaque requête, chaque achat, chaque commentaire, chaque partage, toutes ces opérations modifient subtilement la mémoire commune, c’est-à-dire le magma inextricable des rapports entre les données. Notre comportement en ligne émet un flux continuel de messages et d’indices qui transforment la structure de la mémoire, contribuent à orienter l’attention et l’activité de nos contemporains et entraîne les intelligences artificielles. Mais tout cela se fait aujourd’hui d’une manière plutôt opaque, qui ne rend pas justice à la nécessaire phase de délibération et de conceptualisation consciente qui serait celle d’une intelligence collective idéale.

La mémoire comprend avant tout les données qui sont produites, retrouvées, explorées et exploitées par l’activité humaine. Les interfaces Homme-Machine représentent le “front-end” sans lequel rien n’est possible. Elles déterminent directement ce qu’on appelle l’expérience de l’utilisateur. Entre les interfaces et les données, s’interposent principalement deux types de modèles d’intelligence artificielle, les modèles neuronaux et les modèles symboliques. Nous avons vu plus haut que l’intelligence humaine « naturelle » reposait notamment sur un codage neuronal et sur un codage symbolique. Or nous retrouvons ces deux types de codage, ou plutôt leur transposition électronique, à la couche de la mémoire numérique. Remarquons que ces deux approches, neuronale et symbolique, existaient déjà aux premiers temps de l’IA, dès le milieu du XXe siècle.

Les modèles neuronaux sont entraînés sur la multitude des données numériques disponibles et ils en extraient automatiquement des patterns de patterns qu’aucun programmeur humain n’aurait pu tirer au clair. Conditionnés par leur entraînement, les algorithmes peuvent alors reconnaître et produire des données correspondant aux formes apprises. Mais parce qu’ils ont abstrait des structures plutôt que de tout enregistrer, les voici capables de catégoriser correctement des formes (d’image, de texte, de musique, de code…) qu’ils n’ont jamais rencontrées et de produire une infinité d’arrangements symboliques nouveaux. C’est pourquoi l’on parle d’intelligence artificielle générative. L’IA neuronale synthétise et mobilise la mémoire commune. Bien loin d’être autonome, elle prolonge et amplifie l’intelligence collective qui a produit les données. Ajoutons que des millions d’utilisateurs contribuent au perfectionnement des modèles en leur posant des questions et en commentant les réponses qu’ils en reçoivent. On peut prendre l’exemple de Midjourney, dont les utilisateurs s’échangent leurs consignes (prompts) et améliorent constamment leurs compétences en IA. Les serveurs Discord de Midjourney sont aujourd’hui les plus populeux de la planète, avec plus d’un million d’utilisateurs. On commence à observer un phénomène semblable autour de DALLE 3. Une nouvelle intelligence collective stigmergique émerge de la fusion des médias sociaux, de l’IA et des communautés de créateurs. Ce sont des exemples d’une contribution consciente de l’intelligence collective humaine à des dispositifs d’intelligence artificielle.

De nombreux modèles pré-entraînés généralistes sont open-source et plusieurs méthodes sont aujourd’hui utilisées pour les raffiner ou les ajuster à des contextes particuliers, que ce soit à partir de consignes élaborées, d’un entraînement supplémentaire avec des données spéciales ou au moyen de feed-back humain, ou d’une combinaison de ces méthodes. En somme nous disposons aujourd’hui des premiers balbutiements d’une intelligence collective neuronale, qui émerge à partir d’un calcul statistique sur les données. Observons toutefois que les modèles neuronaux, aussi utiles et pratiques qu’ils soient, ne sont malheureusement pas des bases de connaissance fiables. Ils reflètent forcément l’opinion commune et les biais que charrient les données. Du fait de leur nature probabiliste, ils commettent toutes sortes d’erreurs. Enfin, ils ne savent pas justifier leur résultats et cette opacité n’est pas faite pour inciter à la confiance. L’esprit critique est donc plus que jamais nécessaire, surtout si les données d’entrainement sont de plus en plus produites par l’IA générative, ce qui crée un dangereux cercle vicieux épistémologique.

Intéressons-nous maintenant aux modèles symboliques. On les appelle de différents noms : collections de tags ou d’étiquettes, classifications, ontologies, graphes de connaissance ou réseaux sémantique. Ces modèles peuvent se ramener à des concepts explicites et à des relations tout aussi explicites entre ces concepts, y compris des relations causales. Ils permettent d’organiser les données sur un plan sémantique en fonction des besoins pratiques des communautés utilisatrices et ils autorisent le raisonnement automatique. Avec cette approche, on obtient des connaissances fiables, explicables, directement adaptées à l’usage que l’on vise. Les bases de connaissances symboliques sont de merveilleux moyens de partage des savoirs et des compétences, et donc d’excellents outils d’intelligence collective. Le problème vient de ce que les ontologies ou graphes de connaissances sont créées “à la main”. Or la modélisation formelle de domaines de connaissance complexes est difficile. La construction de ces modèles prend beaucoup de temps à des experts hautement spécialisés et coûte donc cher. La productivité de ce travail intellectuel est faible. D’autre part, s’il existe une interopérabilité au niveau des formats de fichiers pour les métadonnées sémantiques (ou systèmes de classification), cette interopérabilité n’existe pas au niveau proprement sémantique des concepts, ce qui cloisonne l’intelligence collective. On utilise Wikidata pour les applications encyclopédiques, schema.org pour les sites web, le modèle CIDOC-CRM pour les institutions culturelles, etc. Il existe des centaines d’ontologies incompatibles d’un domaine à l’autre et souvent même au sein d’un même domaine.

Cela fait des années que de nombreux chercheurs plaident en faveur de modèles hybrides neuro-symboliques afin de bénéficier des avantages des deux approches. Mon message est le suivant: si nous voulons avancer vers une intelligence collective à support numérique digne de ce nom et qui se tienne à la hauteur de nos possibilités techniques contemporaines, il nous faut :

  1. Renouveler l’IA symbolique en augmentant la productivité du travail de modélisation formelle et en décloisonnant les métadonnées sémantiques.
  2. Coupler cette IA symbolique renouvelée avec l’IA neuronale en plein développement.
  3. Mettre cette IA hybride encore inédite au service de l’intelligence collective.

IEML : VERS UNE BASE DE CONNAISSANCE SÉMANTIQUE

Nous avons automatisé et mutualisé la reconnaissance et la génération automatique de formes, qui est plutôt d’essence neuronale. Comment pouvons-nous automatiser et mutualiser la conceptualisation, qui est plutôt d’essence symbolique? Comment faire travailler ensemble la conceptualisation formelle par des êtres pensants et la reconnaissance de formes qui émerge des statistiques?

Figure 8

Parce que notre intelligence collective repose de plus en plus sur une mémoire numérique commune, cela fait trente ans que je cherche ce que pourrait être un système de coordonnées sémantiques pour la mémoire numérique, un système de métadonnées qui permettrait l’automatisation des opérations de conceptualisation et la mutualisation des modèles conceptuels.

Or la seule chose qui soit capable de générer tous les concepts que l’on voudra tout en maintenant la compréhension réciproque, c’est une langue. Mais les langues naturelles sont irrégulières, ambiguës et leur sémantique n’est pas calculable. J’ai donc construit une langue – IEML (Information Economy MetaLanguage) – dont les relations sémantiques internes sont des fonctions des relations syntaxiques. IEML est à la fois une langue et une algèbre. Cette langue est faite pour faciliter et automatiser autant que possible la construction de modèles symboliques tout en assurant leur interopérabilité sémantique. En somme c’est un outil permettant d’automatiser et de mutualiser la conceptualisation qui a vocation à servir de système de métadonnées sémantiques universel.

Nous pouvons maintenant répondre à notre question principale : comment utiliser l’intelligence artificielle pour augmenter l’intelligence collective? Il faut imaginer un écosystème de bases de connaissances sémantiques organisées selon l’architecture décrite sur la figure 8. Vous voyez qu’entre l’interface Homme-Machine et les données s’interposent trois couches. Au centre la couche des métadonnées sémantiques organise les données sur un plan symbolique et permet, grâce à sa structure algébrique, toutes sortes de calculs uniformes de type logique, analogique et sémantique. Nous savons que la modélisation symbolique est difficile et les éditeurs d’ontologies contemporains ne facilitent pas vraiment la tâche. C’est pourquoi, sous la couche des métadonnées je propose d’utiliser un modèle neuronal pour traduire les systèmes de signes naturels en IEML et vice versa ce qui favoriserait l’édition et l’inspection la plus intuitive possible des modèles sémantiques. Entre la couche des métadonnées et celle des données se trouve encore un modèle neuronal qui permettra la génération automatique de données à partir de consignes (prompts) en IEML. En sens inverse, le modèle neuronal effectuerait la classification automatique des données et leur intégration dans le modèle sémantique de la communauté utilisatrice. Notons que les propriétés algébriques d’IEML visent notamment un perfectionnement de l’apprentissage neuronal.

L’interface Homme-Machine immersive utilisant des signes naturels permettrait à tout un chacun de collaborer à la conceptualisation des modèles au niveau des métadonnées sémantiques et de générer les données appropriées au moyen de consignes (prompts) transparentes. Enfin, cette base de connaissance automatiserait la catégorisation, l’exploitation et l’exploration multimédia des données.

Une telle approche permettrait à chaque communauté de s’organiser selon son propre modèle sémantique tout en supportant la comparaison et l’échange de concepts et de sous-modèles. En somme, un écosystème de bases de connaissances sémantiques utilisant IEML maximiserait simultanément, (1) l’augmentation de la productivité intellectuelle par l’automatisation partielle de la conceptualisation, (2) la transparence des modèles et l’explicabilité des résultats, si importantes d’un point de vue éthique, (3) la mutualisation des modèles et des données grâce à un système de coordonnées sémantique commun, (4) la diversité et la liberté créative puisque les réseaux de concepts formulés en IEML peuvent se différentier et se complexifier à volonté. Un beau programme pour l’intelligence collective. J’appelle de mes vœux une mémoire numérique qui nous permettra de cultiver des écosystèmes d’idées divers, féconds et d’en récolter le maximum de fruits pour le développement humain.

Pierre Lévy lors de la conférence du 10 Octobre 2023. Photo: Luc Courchesne.

Comment penser la nouvelle sphère publique numérique? Je commencerai par évoquer le contexte anthropologique et démographique du basculement de la sphère publique dans l’environnement numérique. Dans un second temps, j’analyserai les nouvelles formes de mémoire et de communication supportées par le nouveau médium. J’évoquerai ensuite les figures de la domination et de l’aliénation propres à ce milieu de communication. Je terminerai, comme il se doit, par quelques perspectives d’émancipation.

1 Le contexte

Une nouvelle époque de la culture

Un des facteurs principaux de l’évolution des écosystèmes d’idées réside dans le dispositif matériel de production et de reproduction des symboles, mais aussi dans les systèmes « logiciels » d’écriture et de codage de l’information. Au cours de l’histoire, les symboles (avec les idées qu’ils portaient) ont été successivement pérennisés par l’écriture, allégés par l’alphabet et le papier, multipliés par l’imprimerie et les médias électriques.

A chaque étape, de nouvelles formes politiques sont apparues : villes, palais-temples et premiers états avec l’écriture, empires et cités avec l’alphabet ou le papier, états nations avec l’imprimerie et les médias électroniques.

Les symboles sont aujourd’hui numérisés et calculés, c’est-à-dire qu’une foule de robots logiciels – les algorithmes – les enregistrent, les comptent, les traduisent et en extraient des patterns. Les objets symboliques (textes, images fixes ou animées, voix, musiques, programmes, etc.) sont non seulement enregistrés, reproduits et transmis automatiquement, ils sont aussi générés et transformés de manière industrielle. En somme, l’évolution culturelle nous a menés au point où les écosystèmes d’idées se manifestent sous l’avatar de données animées par des algorithmes dans un espace virtuel ubiquitaire. Et c’est dans cet espace que se nouent, se maintiennent et se dénouent les liens sociaux, là que se jouent désormais les drames de la Polis… 

Le basculement démographique

L’hypothèse d’une mutation anthropologique rapide et de grande ampleur se fonde sur des données quantitatives qui ne prêtent pas à controverse.

Accès aux ordinateurs

Concernant l’accès aux ordinateurs, on peut considérer que 0,1 pour cent de la population mondiale avait un accès direct à un ordinateur en 1975 (avant la révolution de l’ordinateur personnel). Cette proportion se montait à 20% dans les pays riches en 1990 (avant la révolution du Web). En 2022, pour les pays européens, la proportion oscillait entre 65% (Grèce) et 95% (Luxembourg). A noter que ces derniers chiffres ne prennent pas en compte les téléphones portables.

Accès à l’Internet

La proportion de la population mondiale qui avait accès à l’Internet était d’environ 1% en 1990 (donc avant le Web), de 4% en 1999, de 24% en 2009, de de 51% en 2018 et de 65% en 2023. Selon l’Organisation internationale des télécommunications, environ 5 milliards de personnes sont des internautes. Toujours pour 2023, mais seulement en Europe, la proportion de la population branchée à l’Internet se monte à 93% (ce sont les données de l’Union Européenne).

Prise de connaissance des nouvelles

Pour compléter ces statistiques avec des données concernant plus directement la politique, 40% des européens et 50% des américains et canadiens prennent connaissance des nouvelles par les médias sociaux (je dis bien les médias sociaux et pas l’Internet en général). On dépasse partout les 50% pour les moins de quarante ans. Pour les données spécifiques concernant la lecture des journaux par opposition à la lecture de textes en ligne, les moins de trente ans lisent les nouvelles en ligne à 80% (données du Pew Research Center).

2 Mémoire et communication numérique

La nouvelle sphère publique

En somme, moins d’un siècle après l’invention des premiers ordinateurs, plus de soixante cinq pour cent de la population mondiale est branchée à l’internet et la mémoire du monde est numérisée. Qu’une information se trouve en un point du réseau et la voici partout. Du texte statique sur papier, nous sommes passé à l’hypertexte ubiquitaire, puis à l’Architexte surréaliste qui rassemble tous les symboles. Une mémoire virtuelle s’est mise à croître, secrétée par des milliards de vivants et de morts, fourmillant de langues, de musiques et d’images, grosse de rêves et de fantasmes, mêlant la science et le mensonge. La nouvelle sphère publique est multimédia, interactive, mondiale, fractale, stigmergique et – désormais – médiée par l’intelligence artificielle.

La nouvelle sphère publique est mondiale. Aussi bien le web que les grands médias sociaux comme Facebook, Twitter, LinkedIn, Telegram, Reddit, etc. sont internationaux et multilingues. La traduction automatique a atteint un point ou l’on peut maintenant comprendre, avec quelques erreurs, ce qu’un internaute écrit dans une autre langue. J’ajoute que, parallèlement à la traduction, la synthèse automatique de longs textes progresse, ce qui ajoute à la porosité des diverses bulles cognitives et sémantiques.

La sphère publique numérique est fractale, c’est-à-dire qu’elle se subdivise en sous-groupes, eux-mêmes subdivisés en sous-groupes, et ainsi de suite récursivement, avec toutes les réunions et intersections imaginables. Ces subdivisions recoupent des distinctions de plateformes, de langues, de zones géographiques, de centres d’intérêts, d’orientations politiques, etc. On peut donner comme exemples les groupes Facebook ou LinkedIn, les serveurs Discord, les canaux YouTube ou Telegram, les communautés de Reddit, etc.

L’intelligence collective stigmergique

Si l’échange de messages point à point a toujours lieu, la majeure part de la communication sociale s’effectue désormais de manière stigmergique. La notion de stigmergie est une des clés de la compréhension du fonctionnement de la sphère publique numérique. On distingue traditionnellement trois schémas de communication : un-un, un-plusieurs et plusieurs-plusieurs. Le schéma un-un correspond au dialogue, au courrier postal classique ou au téléphone traditionnel. Le schéma un-plusieurs décrit le dispositif où un éditeur/émetteur central envoie ses messages à une masse de récepteurs dits « passifs ». Ce dernier schéma correspond à la presse, au disque, à la radio et à la télévision. Internet représente une rupture parce qu’il permet à l’ensemble des participants d’émettre pour un grand nombre de récepteurs selon un schéma en réseau décentralisé « plusieurs vers plusieurs ». Cette dernière description est néanmoins trompeuse. En effet, si tout le monde émet pour tout le monde (ce qui est le cas), tout le monde ne peut pas écouter tout le monde. Ce qui se passe en réalité est que les internautes contribuent à alimenter une mémoire commune et prennent connaissance en retour du contenu de cette mémoire par l’intermédiaire de procédures de recherche et de sélection automatisées. Ce sont les fameux algorithmes de Google, (Page Rank), de Facebook, de Twitter, d’Amazon (recommandations), etc.

L’étymologie grecque explique assez bien le sens du mot « stigmergie » : des marques (stigma) sont laissées dans l’environnement par l’action ou le travail (ergon) de membres d’une collectivité, et ces marques guident en retour – et récursivement – leurs actions. Le cas classique est celui des fourmis qui laissent une traîne de phéromones sur leur passage lorsqu’elles ramènent de la nourriture à la fourmilière. L’odeur des phéromones incite d’autres fourmis à remonter leurs traces pour découvrir le butin et ramener des vivres à la ville souterraine en laissant par terre à leur tour un message parfumé.

On peut prétendre que toute forme d’écriture qui n’est pas précisément adressée est une forme de communication stigmergique : des traces sont déposées pour une lecture à venir et font office de mémoire externe d’une communauté. Si le phénomène est fort ancien, il a pris depuis le début du siècle une nouvelle ampleur. Plongés dans la nouvelle sphère publique numérique, nous communiquons par l’intermédiaire de la masse océanique de données qui nous rassemble. Les encyclopédistes de Wikipédia et les programmeurs de GitHub collaborent par l’intermédiaire d’une même base de données. A notre insu, chaque lien que nous créons, chaque étiquette ou hashtag apposée sur une information, chaque acte d’évaluation ou d’approbation, chaque « j’aime », chaque requête, chaque achat, chaque commentaire, chaque partage, toutes ces opérations modifient subtilement la mémoire commune, c’est-à-dire le magma inextricable des rapports entre les données. Notre comportement en ligne émet un flux continuel de messages et d’indices qui transforment la structure de la mémoire et contribuent à orienter l’attention et l’activité de nos contemporains. Nous déposons dans l’environnement virtuel des phéromones électroniques qui déterminent en boucle l’action des autres internautes et qui entraînent par-dessus le marché les neurones formels des intelligences artificielles (IA).

Le rôle de l’Intelligence artificielle dans la nouvelle sphère publique

Le cerveau biologique abstrait le détail des expériences actuelles en schémas d’interactions, ou concepts, codés par des patterns de circuits neuronaux. De la même manière, les modèles neuronaux de l’IA condensent les données innombrables de la mémoire numérique. Ils virtualisent les données actuelles en patterns et en patterns de patterns. Conditionnés par leur entraînement, les algorithmes peuvent alors reconnaître et reproduire des données correspondant aux formes apprises. Mais parce qu’ils ont abstrait des structures plutôt que de tout enregistrer, les voici capables de conceptualiser correctement des formes (d’image, de textes, de musique, de code…) qu’ils n’ont jamais rencontrées et de produire une infinité d’arrangements symboliques nouveaux. C’est pourquoi l’on parle d’intelligence artificielle générative.

La mémoire numérique est détachée de son lieu d’émission et de réception, mise en commun, en attente de lecture, suspendue dans les “nuages” de l’Internet, logicielle. Cette masse de donnée est maintenant compressée par des modèles neuronaux. Et les patterns cachés dans les myriades de couches et de connexions des cerveaux électroniques font retomber en pluie des objets symboliques inédits. Nous ne semons des données que pour récolter du sens.

L’IA nous offre un nouvel accès à la mémoire numérique mondiale. C’est aussi une manière de mobiliser cette mémoire pour automatiser des opérations symboliques de plus en plus complexes, impliquant l’interaction d’univers sémantiques et de systèmes de comptabilité hétérogènes.

3 Le côté obscur

L’état-plateforme et la nouvelle bureaucratie dans les nuages

Si les analyses qui précèdent ont quelque validité, le pouvoir politique se joue pour une bonne part dans la sphère publique numérique. Or son contrôle ultime se trouve « dans les nuages », aux mains des bureaucraties célestes qui calculent les interactions sociales et la mémoire. Les nuages, c’est-à-dire les réseaux de centres de données possédées par l’oligopole des GAFAM, BATX et compagnie. C’est pourquoi les prétendants à l’hégémonie politique mondiale, essentiellement les américains et les chinois, s’allient avec les seigneurs des données – ou les soumettent – parce que les oligarques numériques détiennent le contrôle matériel de la mémoire mondiale et de la sphère publique. Eux seuls ont d’ailleurs la capacité de mémoire et la puissance de calcul nécessaires à l’entraînement des modèles d’IA généraux dits « fondationnels ». Ce que j’appelle un État-Plateforme résulte de l’imbrication d’une super-puissance politique avec une fraction de l’oligarchie numérique.

La bureaucratie des nuages est plus efficace que celle des états-nations, héritée de l’ère de l’imprimerie. Déjà, plusieurs fonctions gouvernementales ou régaliennes sont assurées par les grandes plateformes ou par des réseaux numériques « décentralisés ». La liste qui suit n’est pas close :

  • Vérification de l’identité des personnes, reconnaissance faciale
  • Cartographie et cadastre
  • Création monétaire
  • Régulation du marché
  • Éducation et recherche
  • Fusion de la défense et de la cyberdéfense
  • Contrôle de la sphère publique, censure, propagande, “nudge” (coup de pouce statitique)
  • Surveillance
  • Biosurveillance

Les médias sociaux : addictions et manipulations

Notre allégeance aux seigneurs des données vient de la puissance de leurs centres de calcul, de leur efficacité logicielle et de la simplicité de leurs interfaces. Elle trouve aussi sa source dans notre dépendance à une architecture sociotechnique toxique, qui utilise la stimulation dopaminergique et les renforcements narcissiques addictifs de la communication numérique pour nous faire produire toujours plus de données. On sait combien, de ce point de vue, la santé mentale des populations adolescentes est à risque. En plus de la biopolitique évoquée par Michel Foucault, il faut donc maintenant considérer une psychopolitique à base de neuromarketing, de données personnelles et de gamification du contrôle.

Il faut s’y faire : la Polis a basculé dans la grande base de données mondiale de l’Internet. Dès lors, les luttes de pouvoir – toutes les luttes de pouvoir, qu’elles soient économiques, politiques ou culturelles – sont reconduites et compliquées dans le nouvel espace numérique. Sur le terrain glissant des médias sociaux, les camps qui s’affrontent disposent leurs armées de trolls coordonnées en temps réel, équipées de bots dernier cri, renseignées par l’analyse automatique des données et augmentées par l’apprentissage machine. Dans la guerre civile mondiale qui fait rage, politique intérieure et extérieure inextricablement mêlées, les nouveaux mercenaires sont les influenceurs. 

Mais toutes ces nouveautés n’invalident pas les règles classiques de la propagande, toujours d’actualité : répétition continuelle, simplicité des mots d’ordre, images mémorables, provocation affective et résonnance identitaire. Personne n’oublie non plus les conseils avisés de Machiavel pour amener l’ennemi à s’auto-détruire : « La guerre secrète consiste à se mettre dans la confidence d’une ville divisée, à se porter pour médiateur entre les deux partis jusqu’à ce qu’ils en viennent aux armes : et quand l’épée est enfin tirée à donner des secours prudemment dosés au parti le plus faible, autant dans le but de faire durer la guerre et de les laisser se consumer les uns par les autres, que pour se garder, par un secours trop massif, de révéler son dessein de les opprimer et de les maîtriser tous deux également. Si l’on suit soigneusement cette marche, on arrive presque toujours à son but. »[1]

La tête baissée sur nos smartphones, nous faisons tourner en boucle les stéréotypes qui renforcent nos identités éclatées et nos mémoires courtes sous le regard narquois des experts de l’intoxication, communicants stipendiés, spécialistes du marketing et agents d’influence géopolitiques…

IA et domination culturelle

Poursuivons cette revue des côtés obscurs de la nouvelle sphère publique par les enjeux de domination culturelle liés à l’Intelligence artificielle. On parle beaucoup des « biais » de tel ou tel modèle d’intelligence artificielle, comme s’il pouvait exister une IA non-biaisée ou neutre. Cette question est d’autant plus importante que, comme je l’ai suggéré plus haut, l’IA devient notre nouvelle interface avec les objets symboliques : stylo universel, lunettes panoramiques, haut-parleur général, programmeur sans code, assistant personnel. Les grands modèles de langue généralistes produits par les plateformes dominantes s’apparentent désormais à une infrastructure publique, une nouvelle couche du méta-médium numérique. Ces modèles généralistes peuvent être spécialisés à peu de frais avec des jeux de données issues d’un domaine particulier et de méthodes d’ajustement. On peut aussi les munir de bases de connaissances dont les faits ont été vérifiés.

Les résultats fournis par une IA découlent donc de plusieurs facteurs qui contribuent tous à son orientation ou si l’on préfère, à ses « biais ». a) Les algorithmes proprement dits sélectionnent les types de calcul statistique et les structures de réseaux neuronaux. b) Les données d’entraînement favorisent les langues, les cultures, les options philosophiques, les partis-pris politiques et les préjugés de toutes sortes de ceux qui les ont produites. c) Afin d’aligner les réponses de l’IA sur les finalités supposées des utilisateurs, on corrige (ou on accentue!) « à la main » les penchants des données par ce que l’on appelle le RLHF (Reinforcement Learning from Human Feed-back – en français : apprentissage par renforcement à partir d’un retour d’information humain). d) Finalement, comme pour n’importe quel outil, l’utilisateur détermine les résultats au moyen de consignes en langue naturelle (les fameux prompts). Il faut noter que des communautés d’utilisateurs s’échangent et améliorent collaborativement de telles consignes. La puissance de ces systèmes n’a d’égal que leur complexité, leur hétérogénéité et leur opacité. Le contrôle règlementaire de l’IA, sans doute nécessaire, semble difficile.

4 Perspectives d’émancipation

Littéracie numérique et pensée critique

Malgré tout ce qui vient d’être dit, la sphère publique du XXIe siècle est plus ouverte que celle du XXe siècle : les citoyens des pays démocratiques y jouissent d’une grande liberté d’expression et peuvent choisir leurs sources d’information parmi un vaste éventail de spécialisations thématiques, de langues et d’orientations politiques. Cette liberté d’expression et d’information, la nouvelle puissance distribuée de création et d’analyse de données, sans oublier les possibilités de coordination sociale offertes par le nouveau médium, tout cela ne représente que des potentialités émancipatrices. Seule une véritable éducation à la pensée critique dans le nouvel environnement de communication permettra d’actualiser ce potentiel de citoyenneté renouvelée. Pour fixer les idées, une étude de la BBC a récemment montré que 50% des jeunes gens de 12 à 16 ans croient aux nouvelles partagées sur les médias sociaux sans les vérifier. Et nous savons d’expérience que les enfants ne sont pas les seuls sujets crédules. Idéalement, la nouvelle éducation à la pensée critique devrait enseigner aux futurs citoyens à s’organiser comme de petites agences de renseignement autonomes qui rangent leurs centres d’intérêts par ordre de priorité, sélectionnent soigneusement des sources diversifiées, analysent les données à partir d’hypothèses explicites et maintiennent une classification pertinente de leur mémoire numérique personnelle. Il faut apprendre à discerner les sources de données en termes de catégories organisatrices, de récits dominants et d’agendas. On inculquera le réflexe journalistique élémentaire de croiser les sources ainsi identifiées. Enfin, les élèves devraient être entraînés à l’intelligence collective stigmergique et à l’apprentissage collaboratif.

Pour une gouvernance de la sphère publique numérique

Je me contenterai ici d’indiquer quelques grandes orientations d’une nécessaire gouvernance de la nouvelle sphère publique plutôt que de déterminer précisément les moyens d’y parvenir. Si le pilotage par gros temps peut nécessiter de nombreux détours, le cap est clair : il s’agit de perfectionner, autant que possible, la dimension réflexive d’une intelligence collective déjà en acte.

  • A l’appui de cette finalité, la transparence des processus en ligne semble une condition sine qua non. Je vise en particulier, mais pas seulement, une description claire, brève et en langue naturelle des algorithmes et des données d’entraînement des IA.
  • A l’exemple de Wikimédia, efforçons-nous de maximiser les « communs » de la connaissance.
  • Ouvrons les jeux de données et les algorithmes selon la voie tracée par le mouvement du logiciel libre.
  • Assurons la souveraineté pratique et légale des individus et des groupes sur les données qu’ils produisent.
  • Enfin, décentralisons la gouvernance des interactions en ligne en favorisant les procédures consensuelles. Le mouvement social qui porte la blockchain indique ici un chemin possible.

Afin d’apporter ma pierre au projet d’une intelligence collective réflexive j’ai inventé une langue (IEML, Information Economy MetaLanguage) ayant la même capacité d’expression et de traduction que les langues naturelles mais qui a aussi la régularité d’une algèbre, permettant ainsi un calcul de la sémantique. Cette langue pourrait servir de système de coordonnées sémantique à la nouvelle sphère publique. Elle contribuerait ainsi à transformer la mémoire numérique en miroir de nos intelligences collectives. Dès lors, une boucle de rétroaction plus fluide entre les écosystèmes d’idées et les communautés qui les entretiennent nous rapprocherait de l’idéal d’une intelligence collective réflexive au service du développement humain et d’une démocratie renouvelée. Il ne s’agit pas d’entretenir quelque illusion sur la possibilité d’une transparence totale, mais plutôt d’ouvrir la voie à l’exploration critique d’un univers de sens infini.


[1] Discours sur la première décade de Tite-Live. La Pléiade, Gallimard, Paris, p. 588

INTRODUCTION

IEML est une langue (mathématique) dont la finalité principale est de formaliser la description des concepts et de leurs connexions. On s’en servira pour produire des modèles de données, des systèmes de métadonnées sémantiques, des ontologies, des graphes de connaissances et autres réseaux sémantiques. Je dis que cette langue est “mathématique” parce que les nœuds conceptuels (les entités) et les relations – représentés par des phrases IEML – peuvent être générés de manière fonctionnelle et parce que cette langue non ambiguë instaure une bijection entre séquences de caractères (ou chaines phonétiques) et réseaux de concepts. Le grand avantage d’IEML est de rendre les différentes ontologies ou modèles de données sémantiquement compatibles puisque tous les concepts sont construits au moyen du même dictionnaire compact en utilisant la même grammaire régulière.

IEML ne vise pas principalement les sciences exactes, qui disposent déjà d’une formalisation mathématique adéquate et d’une conceptualisation univoque, mais plutôt les sciences humaines, dont la formalisation et la calculabilité laissent à désirer. À noter que l’ingénierie (notamment la documentation de systèmes complexes) et la médecine sont néanmoins des cas d’usages favorables.

COMMENT CONSTRUIRE UN CONCEPT EN IEML?

Pour construire un concept en IEML, il faut utiliser sa grammaire, résumée dans la figure ci-dessous.

Structure et composants de la phrase IEML, illustrés par un exemple

Pour plus de détails sur la grammaire d’IEML, voir https://pierrelevyblog.com/2022/05/19/ieml-pour-les-humanites-numeriques/ et pour un compte rendu encore plus fourni, aller à https://intlekt.io/2022/10/02/semantic-computing-with-ieml-3/. Le rôle 0 peut être occupé par un nom dans les phrases nominales.

Après avoir pris connaissance de la grammaire, il faut se donner une définition du concept à construire. Voici ci-dessous une définition possible de la démocratie qui utilise la structure de la phrase en IEML.

@node
fr: démocratie
en: democracy
(
0 verbe: exercer le pouvoir
1 sujet: tous les citoyens
2 objet: unité politique / cité
4 cause/instrument: suffrage universel
7 intention/contexte: régime politique
8 manière: séparation des pouvoirs et protection des minorités
).

Beaucoup d’autres définitions IEML de la démocratie sont possibles, plus simples, plus complexes ou différentes, mais elles seront toutes explicites et on pourra les comparer.

Pour la définition que nous avons proposée, les concepts nécessaires existent déjà dans le dictionnaire IEML pour les rôles 0, 1, 2 et 7, mais pas pour les rôles 4 et 8. Il faut donc créer les concepts de suffrage universel, de séparation des pouvoirs et de protection des minorités. Ici encore, les définitions ci-dessous auraient pu être différentes. Chaque @node créé peut être réutilisé comme un #concept!

@node
fr: suffrage universel = “tous les citoyens choisissent les dirigeants”
en: universal suffrage
(
0 ~indicatif #choisir,
1 ~tous #citoyen,
2 ~pluriel #dirigeant
).

@node
fr: séparation des pouvoirs
en: separation of powers
(
0 ~voix passive #séparer,
1 &et [#pouvoir législatif #pouvoir judiciaire #pouvoir économique]
).

Pour construire le concept de protection des minorités, je dois d’abord construire le concept de minorité.

@node
fr:minorités
en: minorities
(
0 ~pluriel #communauté,
8 &et [#petit  #faible]
).

@node
fr: protection des minorités
en:protection of minorities
(
0 ~indicatif #protéger un groupe,
2 #minorités
).

Voici finalement un concept possible de démocratie formellement défini en IEML.

@node
fr: démocratie
en: democracy
(
0 #exercer le pouvoir,
1 ~tous #citoyen,
2 #unité politique,
4 *instrument #suffrage universel,
7 *se référant à #organisation politique,
8 *avec &et [ #séparation des pouvoirs #protection des minorités]
).

REMARQUES FINALES

À noter que, pour une utilisation concrète dans une ontologie, on ne construit jamais les concepts isolément (un par un) en IEML mais toujours dans des paradigmes ou champs sémantiques. Dans une ontologie des sciences politiques, un paradigme des régimes politiques conserverait les rôles 0-verbe, 2-objet et 7-contexte/intention, mais ferait varier les rôles 1-sujet, 4-cause/instrument et 8-manière. On construirait ainsi une matrice en 3 dimensions qui pourrait être représentée par plusieurs tables 2 D.

Pour des exemples de paradigmes construits en IEML dans le domaine de la santé mentale, voir: https://intlekt.io/2023/02/07/ieml-in-global-medical-communication/

Par ailleurs, le sens (ou sémantique) d’un concept ne se réduit pas à sa définition. Il faut aussi prendre en compte le contexte d’utilisation, c’est-à-dire le réseau de relations auquel renvoie le concept dans une ontologie ou graphe de connaissances.

Pour naviguer dans le dictionnaire IEML et les débuts d’ontologies, aller à https://ieml.intlekt.io/login , choisir « read without account » puis « published projects ». Explorer le menu contextuel pour chaque mot, en particulier la visualisation de la table paradigmatique à laquelle le mot appartient.

Art: M.C. Escher

[For an English version of this post, click here.]

Le langage permet une coordination dynamique entre les réseaux de concepts entretenus par les membres d’une communauté, de l’échelle d’une famille ou d’une équipe, jusqu’aux plus grandes unités politiques ou économiques. Il permet également de raconter des histoires, de dialoguer, de poser des questions et de raisonner. Le langage soutient non seulement la communication mais aussi la pensée ainsi que l’organisation conceptuelle de la mémoire, complémentaire de son organisation émotionnelle et sensorimotrice.

Mais comment le langage fonctionne-t-il ? Du côté de la réception, nous entendons une séquence de sons que nous traduisons en un réseau de concepts, conférant ainsi son sens à une proposition. Du côté de l’émetteur, à partir d’un réseau de concepts que nous avons à l’esprit – un sens à transmettre – nous générons une séquence de sons. Le langage fonctionne comme une interface entre des séquences de sons et des réseaux de concepts. Et gardons en tête que les relations entre les concepts sont eux-mêmes des concepts.

Les chaînes de phonèmes (des sons), peuvent être remplacées par des séquences d’idéogrammes, de lettres, ou de gestes comme dans le cas de la langue des signes. L’interfaçage quasi-automatique entre une séquence d’images sensibles (sonores, visuelles, tactiles), et un graphe de concepts abstraits (catégories générales) reste constant parmi toutes les langues et systèmes d’écriture. 

Cette traduction réciproque entre une séquence d’images (le signifiant) et des réseaux de concepts (le signifié) suggère qu’une categorie  mathématique pourrait modéliser le langage en organisant une correspondance entre une algèbre et une structure de graphe. L’algèbre réglerait les opérations de lecture et d’écriture sur les textes, tandis que la structure de graphe organiserait les opérations sur les nœuds et les liens orientés. A chaque texte correspondrait un réseau de concepts. Les opérations sur les textes reflèteraient dynamiquement les opérations sur les graphes conceptuels. 

Nous avons besoin d’un langage régulier pour coder des chaînes de signifiants et nous pouvons transformer les séquences de symboles en arbres syntagmatiques (la syntaxe étant l’ordre du syntagme) et vice versa. Cependant, si son arbre syntagmatique – sa structure grammaticale interne – est indispensable à la compréhension du sens d’une phrase, il n’est pas suffisant. Parce que chaque expression linguistique repose à l’intersection d’un axe syntagmatique et d’un axe paradigmatique. L’arbre syntagmatique représente le réseau sémantique interne d’une phrase, l’axe paradigmatique représente son réseau sémantique externe et en particulier ses relations avec des phrases ayant la même structure, mais dont elle se distingue par quelques mots. Pour comprendre la phrase ” Je choisis le menu végétarien “, il faut bien sûr reconnaître que le verbe est “choisir”, le sujet “je” et l’objet “le menu végétarien” et savoir en outre que “végétarien” qualifie “menu”. Mais il faut aussi reconnaître le sens des mots et savoir, par exemple, que végétarien s’oppose à carné et à végétalien, ce qui implique de sortir de la phrase pour situer ses composantes dans les systèmes d’oppositions sémantiques de la langue. L’établissement de relations sémantiques entre concepts suppose que l’on reconnaisse les arbres syntagmatiques internes aux phrases, mais aussi les matrices paradigmatiques externes à la phrase qui organisent les concepts, que ces matrices soient propres à une langue ou à certains domaines pratiques.

Parce que les langues naturelles sont ambiguës et irrégulières, j’ai conçu une langue mathématique (IEML) traduisible en langues naturelles, une langue calculable qui peut coder algébriquement non seulement les arbres syntagmatiques, mais aussi les matrices paradigmatiques où les mots et les concepts prennent leur sens. Chaque phrase du métalangage IEML est située précisément à l’intersection d’un arbre syntagmatique et de matrices paradigmatiques. 

Sur la base de la grille syntagmatique-paradigmatique régulière d’IEML, il devient possible de générer et de reconnaître des relations sémantiques entre concepts de manière fonctionnelle : graphes de connaissance, ontologies, modèles de données… Toujours du côté de l’IA, un codage des étiquettes ou de la catégorisation des données dans cette langue algébrique qu’est IEML faciliterait l’apprentissage machine. Au-delà de l’IA, ma vision pour IEML est de favoriser l’interopérabilité sémantique des mémoires numériques et de développer une synergie entre l’autonomisation cognitive personnelle et la réflexivité de l’intelligence collective.

Sur le plan technique, il s’agit d’un projet léger et décentralisé: un dictionnaire IEML-langues naturelles, un analyseur syntaxique (parseur) open-source supportant les fonctions calculables sur les expressions de la langue et une plate-forme d’édition collaborative et de partage des concepts et ontologies. Le développement, la maintenance et l’utilisation d’un protocole sémantique basé sur l’IEML nécessitera un effort de recherche et de formation à long terme.

“About memories” par Hiroko Kono (2011)

Le tournant numérique en sciences humaines

Ce billet rend compte de ma communication au colloque Humanistica à Montréal, le 20 mai 2022.

Les chercheurs en sciences humaines et sciences sociales constituent des bases de données pour l’analyse, la fouille et le partage. L’indexation des documents en ligne est cruciale pour les auteurs, les éditeurs et les lecteurs. Aujourd’hui, il existe une multiplicité de systèmes de métadonnées sémantiques et ontologies selon les langues, disciplines, traditions et théories. Ces systèmes sont souvent hérités de l’ère de l’imprimerie.
Dans ce contexte, le métalangage IEML propose un outil de modélisation et d’indexation programmable, capable d’assurer l’interopérabilité sémantique sans uniformiser les points de vue.

En IEML il y a coïncidence entre les concepts et leur représentation linguistique. Exprimés en IEML plutôt qu’en langue naturelle, les concepts deviennent auto-explicatifs et univoques (sans ambiguïtés lexicale ou syntagmatique). Les concepts d’ontologies différentes sont composés à partir des mots d’un même dictionnaire IEML selon une grammaire régulière. Il devient donc possible d’échanger collaborativement des modèles et sous-modèles entre chercheurs parlant des langues différentes et venant de disciplines distinctes. En somme, IEML résout le problème de l’interopérabilité sémantique.

Une plateforme pour la conception et le maintien collaboratif de graphes sémantiques est en vue. (ontologies, systèmes d’indexation, étiquettes pour le machine learning, etc.).

Un nouvel outil sémantique

IEML n’est pas un format – de données ou de métadonnées – mais une langue qui possède:

• un dictionnaire compact de 3000 mots (accessibles en anglais et français)

• une grammaire entièrement régulière

• le tout intégré à un éditeur-parser

IEML a les mêmes qualités et forces sémantiques qu’une langue naturelle. Ainsi, IEML peut traduire toutes les langues naturelles et peut servir de pivot entre langues naturelles. Sa sémantique est calculable parce que c’est une fonction de sa syntaxe (qui est régulière).

Destinés à la construction de graphes sémantiques, ses phrases peuvent prendre deux formes: nœuds ou liens. IEML possède des instructions permettant de programmer des graphes sémantiques tels que : hypertextes, ontologies et modèles de données.

Les mots

En utilisant la grammaire et les mots du dictionnaire, l’éditeur IEML permet de générer récursivement autant de concepts que l’on veut. Chaque mot en IEML est construit de manière régulière à partir de
6 primitives (lettres majuscules).

Les 6 primitives d’IEML

Les six primitives, tout comme les autres lettres d’IEML sont des mots et dénotent des concepts lorsqu’elles sont utilisées seules. Lorsqu’elles sont utilisées dans un autre mot, elles représentent des places dans des systèmes de symétrie: symétrie 1 pour E, symétrie 2 pour U/A, symétrie 3 pour S/B/T. Pour plus de détails sur les primitives d’IEML, voir: https://intlekt.io/semantic-primitives/

L’opération générative pour les mots a trois rôles: substance attribut mode.
En combinant cette opération générative () avec une opération de jonction (+), on peut former des paradigmes de mots. Ci-dessous les 25 lettres minuscules sont réunies dans une table paradigmatique qui multiplie U+A+S+B+T en substance par U+A+S+B+T en attribut, avec un mode toujours vide.

Les 25 lettres minuscules en IEML

Dans l’image ci-dessus, les couleurs signalent quatre systèmes de symétries (4, 6, 6, 9) dont les lettres occupent des positions déterminées. Pour en savoir plus sur les 25 lettres minuscules, voir: https://intlekt.io/25-basic-categories/

En IEML, les paradigmes de mots, comme d’ailleurs les paradigmes de phrases, sont des systèmes de symétries sémantiques représentés par des systèmes de symétries syntaxiques. Par exemple, le paradigme ci-dessous organise les relations spatiales. Les deux premières rangées organisent les relations spatiales selon les axes vertical (première rangée) et horizontal (deuxième rangée). Les trois rangées inférieures organisent les entrées et sorties, la latéralisation et les chemins.

Paradigme des relations spatiales. Cliquez sur l’image pour l’agrandir 😉

Retenons que le dictionnaire d’IEML est avant tout une boîte à outils pour construire de nouvelles catégories au moyen de phrases.

Les phrases

Les neuf rôles de la phrase – en vert dans l’exemple ci-dessous – ainsi que les * auxiliaires, les ~ flexions et les & jonctions permettent l’expression de récits et d’explications causales. Les # mots en français sont des alias de mots ou de concepts-phrases en IEML.

Exemple de phrase IEML
Evocation

La création de relations sémantiques

En IEML, les relations sémantiques ne se créent pas une par une “à la main” mais se programment. L’instruction de création de relations sémantiques ci-dessous se décompose en deux parties. La partie qui commence par @link énonce la phrase de lien avec les deux variables $A et $B: “Le mot A signifie le contraire du mot B”. Les numéros 0, 1 et 8 sont des raccourcis pour les rôles de phrase: racine, initiateur et manière. La partie qui commence par @function énonce le domaine (en l’occurrence le paradigme de relations spatiales ci-dessus) qui est concerné par la création de relations et il énonce les conditions nécessaires en termes d’adresses syntaxiques et de contenu. La fonction de création de relations n’utilise que deux “équations” connectées par des “ET” et des “OU”:
adresse syntaxique A == adresse syntaxique B
adresse syntaxique A == contenu c

Exemple d’instruction déclarative de création de relations sémantiques

Remarquons que l’instruction déclarative ci-dessus crée 30 relations sémantiques d’un coup!

Indexation, noms propres, référence et auto-référence.

IEML traite explicitement les noms propres et les références qui ne sont pas des catégories générales. L’exemple ci-dessous donne trois exemples : un nom, un nombre et un lien hypertexte. Pour en savoir plus sur le traitement des noms propres en IEML voir:
https://pierrelevyblog.com/2021/07/13/les-noms-propres-en-ieml/

Exemples de référence en IEML

IEML peut aussi faire référence à ses propres expressions: liens, définitions, commentaires, etc. L’exemple ci-dessous est pris au paradigme des relations spatiales et à la relation “le mot A signifie le contraire du mot B” examiné plus haut.

Exemple d’auto-référence en IEML

Plusieurs ontologies sont actuellement en cours de développement. N’hésitez pas à me contacter si vous êtes intéressés par IEML!

“Le penseur” de Rodin
Art: Emma Kunz

For the English version, go here.

Le but de cette entrée de blog est d’expliquer comment fonctionne la sémantique référentielle en IEML et en particulier comment IEML traite les noms propres. J’ai distingué la sémantique linguistique et la sémantique référentielle ici et . Je rappelle néanmoins dans ce qui suit les idées principales qui fondent cette distinction. 

Sémantique linguistique et sémantique référentielle

La sémantique linguistique est interne au langage, tandis que la sémantique référentielle fait le pont entre un énoncé et ce dont il parle.

Lorsque je dis que “les platanes sont des arbres”, je ne fais que préciser le sens conventionnel du mot “platane”. Mais si je dis que “cet arbre-là, dans la cour, est un platane”, alors je pointe vers un état de chose, et ma proposition est vraie ou fausse. Le second énoncé met évidemment en jeu la sémantique linguistique puisque je dois d’abord connaître le sens des mots et la grammaire du français pour la comprendre. Mais s’ajoute à la dimension linguistique une sémantique référentielle puisque l’énoncé se rapporte à un objet particulier dans une situation concrète. 

Un dictionnaire classique définit le sens conventionnel des mots dans une langue, chaque mot étant expliqué en utilisant d’autres mots qui sont eux-mêmes expliqués par d’autres mots, et ainsi de suite de manière circulaire. Un dictionnaire relève donc principalement de la sémantique linguistique. En revanche, un dictionnaire encyclopédique contient des descriptions d’individus réels ou fictifs pourvus de noms propres tels que divinités, héros de roman, personnages et événements historiques, objets géographiques, monuments, œuvres de l’esprit, etc. Sa principale fonction est de répertorier et de décrire des objets externes au système d’une langue. Il enregistre donc une sémantique référentielle.

La sémantique linguistique met en relation un signifiant avec un signifié. Par exemple, le signifiant “arbre”, a pour signifié : “végétal ligneux, de taille variable, dont le tronc se garnit de branches à partir d’une certaine hauteur”. En revanche, la sémantique référentielle met en rapport un signifiant avec un référent. Par exemple, le signifiant “Napoléon 1er” désigne un personnage historique.

Individus et catégories

Les mots contenus dans un dictionnaire classique, et particulièrement les noms communs, désignent généralement des catégories alors que les entrées du dictionnaire encyclopédique se rapportent plutôt à des individus. Le nom commun “arbre” désigne n’importe quel arbre, la classe des arbres, alors que “l’Arbre de la Bodhi” de Bodh Gaya en Inde est un individu portant un nom propre. 

Par “catégorie” j’entends une classe, un genre, un ensemble, une collection, etc. Et ce n’est pas le hasard qui réunit un ensemble d’êtres ou d’objets dans la même catégorie, mais bien au contraire des traits communs. Par contraste avec une catégorie, un “individu” est unique, discret, particulier, qu’il s’agisse d’une personne, d’une chose, d’un événement, d’un lieu, d’une date, etc. On peut élargir le concept d’individu en suivant Bertrand Russell, qui en propose la définition suivante: “une série de faits liés entre eux par des relations causales”. En ce sens l’Écosystème de la forêt amazonienne ou la Révolution française sont bien des individus.

Les deux notions d’individu et de catégorie font système : les individus appartiennent à des catégories et les éléments à des ensembles. L’individu est plutôt concret, comme Isabelle qui est devant moi, alors que la catégorie générale est abstraite, comme l’humanité, qu’il m’est impossible de toucher.

Ne confondons pas “catégorie générale” avec “tout” ni “individu” avec “partie”. Les touts ne sont pas des ensembles abstraits, mais bel et bien des individus, comme d’ailleurs les parties. Par exemple, un organisme animal est un individu total et ses membres sont des parties individuelles de ce tout. Cet éléphant est un exemplaire individuel de la classe des éléphants, mais sa trompe est une partie du corps de l’éléphant.

Noms propres et noms communs: une définition 

Je vais maintenant définir la différence entre noms communs et noms propres. Mon but n’est pas ici de trancher définitivement un débat que de grands linguistes, logiciens et philosophes mènent depuis plusieurs siècles sur ce thème mais plutôt de fixer une convention utile pour le métalangage IEML (Information Economy MetaLanguage) en suivant le consensus aujourd’hui majoritaire en philosophie et en linguistique.  

Un nom commun 

(1) Il désigne une catégorie. 

(2) Il a un signifié relativement constant dans le système de la langue, c’est-à-dire qu’il possède une place dans le réseau cyclique des signifiés d’un dictionnaire.

(3) Il peut en outre acquérir un référent de manière variable selon les actes d’énonciation, comme dans “cette bouteille”.

Un nom propre 

(1) Il désigne un individu.

(2) C’est un signifiant qui n’a pas de signifié dans le système de la langue. 

(3) Il possède un référent constant conféré par une tradition sociale qui remonte à un acte de nomination. Selon Saul Kripke, un nom propre est un “désignateur rigide” dont la principale fonction est de permettre de parler d’un objet indépendamment des propriétés qu’il possède et des interprétations qu’on lui donne.

 Ces définitions peuvent prêter à malentendus et donnent lieu à quelques exceptions. 

Est-il vrai qu’un nom propre n’a pas de signifié?

Commençons tout de suite par évoquer la révolte instinctive contre l’idée qu’un nom propre n’a pas de signifié. Car lorsque nous entendons le mot “Napoléon” nous imaginons tout de suite le bicorne, les abeilles d’or, le jeune général traversant le pont d’Arcole un drapeau à la main, le code civil, le désastre de la Bérésina, etc. Mais Napoléon n’est pas un nom commun de la langue française, c’est un personnage historique. Les images qu’évoquent ce signifiant ne sont pas des signifiés conventionnels mais des connotations qui peuvent varier fortement selon que l’on est français ou anglais, bonapartiste ou légitimiste, militariste ou pacifiste, sensible ou non à la cause abolitioniste (la loi du 20 mai 1802 rétablit l’esclavage), etc. Les connotations sont variables mais la référence à l’individu est constante et sans ambiguité. Les noms propres peuvent avoir des connotations, mais ils n’ont pas de signifié conventionnel dans le système de la langue.

Les noms communs désignent-ils toujours des catégories générales?

Autre point douteux : les noms communs désignent-ils toujours des catégories générales? Par exemple, la lune, satellite de la terre, est-elle un nom commun ou un nom propre? Et si c’est un nom commun, comment se fait-il que “La lune” désigne un individu? Mais remarquons que l’on parle des lunes de Jupiter, qui ont été découvertes par Galilée. Le mot “lune” est donc bien un nom commun. Lorsqu’il est utilisé avec un article défini sans autre précision il réfère à l’astre argenté au cycle quasi mensuel qui éclaire nos nuits, sinon il signifie la catégorie des satellites de planètes. Le même problème se pose pour d’autre objets cosmiques, comme le soleil, la terre, le ciel, etc. En règle générale, chaque fois qu’un nom peut être utilisé au pluriel sans absurdité, alors il s’agit d’un nom commun. La philosophie bouddhiste multiplie les “terres” : les dix bhumis (sanscrit pour “terres”) sont des étapes successives sur le chemin du Bodhisatva. Bien qu’il semble à première vue qu’il n’y ait qu’un seul ciel, le mot possède plusieurs pluriels en français : “cieux” au sens spirituel et “ciels” aux sens matériels. Ne parle-t-on pas des ciels de Turner ou de Monet? En revanche, Mars ou Saturne sont des satellites particuliers ou des divinités personnelles et je ne les ai jamais vus utilisés au pluriel. Ce sont donc des noms propres désignant des individus astronomiques ou mythologiques.

Dans certains usages, une catégorie générale peut être considérée comme un individu

Encore un cas troublant: on peut faire référence à une catégorie générale en la considérant comme un individu. Lorsque je dis “Le fruit que je tiens dans ma main est un melon” j’utilise bien le mot melon comme une catégorie générale dans laquelle je range le fruit individuel que je tiens dans ma main. Jusqu’ici tout va bien. Mais je peux toujours considérer une catégorie générale comme un individu, un élément de l’ensemble des catégories générales : c’est le point de vue réaliste ou platonicien. Par exemple lorsque je dis “le melon est un fruit”, “melon” est au singulier et il est accompagné d’un article défini. Il s’agit donc d’un individu: une “catégorie individuelle”. Mais il ne s’agit là que d’un usage possible d’un nom commun, qui ne range nullement le mot “melon” dans la catégorie des noms propres. Dès qu’une catégorie générale est placée dans un énoncé en position de référent (nous parlons de “cette catégorie-là”), l’usage en fait un individu. Il suffit de distinguer les niveaux logiques pour ne pas se prendre les pieds dans le tapis sémantique. Retenons que lorsqu’un mot possède un signifié dans le système de la langue, il s’agit d’un nom commun, bien que l’on puisse s’en servir pour désigner un individu.

Des noms propres peuvent être utilisés comme prototypes de catégories générales

Dans l’effort pour discriminer entre nom propre et nom commun, la plus grande difficulté vient de l’utilisation des noms propres comme prototypes de catégories générales. On parle par exemple de statuettes qui sont des Vénus préhistoriques ou d’un maître-nageur qui est un Apollon. On traite ironiquement d’Einstein une personne à l’esprit lent, etc. “Les Vénus” contredit la règle générale que nous avons énoncé plus haut, selon laquelle chaque fois qu’un nom peut être utilisé au pluriel sans absurdité, alors il s’agit d’un nom commun. Bien pire, les noms propres peuvent engendrer des adjectifs désignant des qualités abstraites. Par exemple, on souligne le contraste entre l’évolution lamarckienne et l’évolution darwinienne, on évoque les guerres napoléoniennes ou les idées platoniciennes. Certes, Vénus, Apollon, Platon, Napoléon, Darwin, etc. sont des individus, mais ces individus ont tellement marqué les imaginations qu’ils sont devenus les “membres centraux”, ou figures archétypiques, de catégories comprenant les individus qui leur ressemblent ou qui possèdent avec eux une contiguïté spatio-temporelle (la “période napoléonienne”). Dès lors, le nom propre est utilisé de manière figurative comme un nom commun, ou comme une qualité générique dans le cas d’un adjectif construit à partir d’un nom propre. Nous avons donc affaire dans ces cas à des exceptions à notre règle, dans lesquelles des noms propres sont utilisés (par métaphore, métonymie, contiguïté, etc.) pour désigner des catégories.

Une Vénus Préhistorique

Nom propres et références en IEML

Chacun des trois mille mots élémentaires du dictionnaire d’IEML se définit au moyen de phrases utilisant d’autres mots élémentaires et chaque expression complexe en IEML (groupes de mots, phrases, textes) renvoie au noyau circulaire d’inter-définition du dictionnaire. Cette inter-définition circulaire des mots du dictionnaire est d’ailleurs le propre de toutes les langues. Selon leurs rôles grammaticaux dans un énoncé, les trois mille éléments du dictionnaire IEML peuvent être lus comme des noms, des adjectifs, des verbes ou des adverbes. Leurs signifiés sont des catégories générales. Les signifiants de ces catégories générales sont construits pour avoir le maximum de relations fonctionnelles avec leurs signifiés. Les signifiés du même champ sémantique appartiennent au même paradigme et possèdent des similitudes syntaxiques. La composition matérielle des signifiants et leurs places respectives dans les paradigmes donne des indications sur leur sens. Par exemple, les signifiants des couleurs ou des sentiments ont des traits syntaxiques en commun. Les couleurs qui contiennent du rouge ou les sentiments qui avoisinent la colère ont également des traits matériels communs. C’est ce qui fait d’IEML une idéographie. On ne trouve évidemment pas ce type de relation signifiant / signifié dans les langues naturelles, dans lesquelles les mots pour désigner les couleurs ou les sentiments, n’ont pas de traits phonétiques communs. Jointe à la régularité sans faille de sa grammaire, ce rapport fonctionnel entre signifiant et signifié fait d’IEML une langue à la sémantique (linguistique) calculable. 

En revanche, les noms propres comme Napoléon ou le Fuji Yama n’ont pas de traduction en IEML et, de ce fait, leur sémantique linguistique n’est pas calculable en IEML. En IEML les noms propres sont considérés comme des signifiants n’ayant pas de signifié (du moins pas en IEML) et dont le sens est donc purement référentiel. Les références, tout comme les noms propres, sont notés entre crochets. Voici quelques exemples qui mettent en valeur le cas particulier de Napoléon. Dans les phrases IEML entre parenthèses qui suivent, les mots en italiques désignent les rôles grammaticaux de la ligne qu’ils initient, les mots en français contiennent des liens vers le mot IEML correspondant.

***

(racine  le  officierstratège  <Napoléon>).

L’expression signifie : “le général Napoléon”

***

(racine   le   chef  <Napoléon> ,
manière   de   empire).

L’expression signifie : “l’empereur Napoléon” 

***

(racine  vide <Napoléon>). 

Ici Napoléon n’est qualifié par aucune catégorie générale.

***

(racine  pluriel  guerre,
manière  de   officierstratège <Napoléon>).

L’expression signifie “les guerres napoléonniennes” 

***

L’expression “les guerres napoléoniennes” peut être réifiée ainsi:

@alias les-guerres-napoléonniennes
(racine pluriel  guerre,
manière de   officierstratège  <Napoléon>).

***

L’expression définie ci-dessus peut être réutilisée dans une phrase, par exemple:

(racine être blessé,
sujet  singulier  pronom troisième personne,
temps  passé,
temps  pendant les-guerres-napoléonniennes). 

L’expression signifie: “Il a été blessé pendant les guerres napoléoniennes”

Dans cet exemple, on voit comment une phrase IEML (y compris une phrase contenant un nom propre) peut être réifiée et utilisée comme un mot dans une phrase au niveau de complexité linguistique supérieure. Ce type d’opération peut être répété récursivement, ce qui permet d’atteindre des degrés élevés de différentiation et de précision sémantique. 

*** 

Les deux exemples qui précèdent montrent qu’il est possible d’utiliser des noms propres comme prototypes de catégories générales en IEML, comme on le fait dans les langues naturelles. Mais en règle générale on préfèrera exprimer directement les catégories évoquées par les noms propres dans certaines langues naturelles par des catégories en IEML. Par exemple, pour traduire “sadique” on ne reprendra pas le nom du Marquis de Sade, mais on dira simplement “quelqu’un qui aime faire souffrir les autres.”

***

Dans l’exemple ci-dessous, l’objet de la proposition principale est une proposition secondaire – on remarquera les parenthèses dans les parenthèses – et l’accent sémantique (le point d’exclamation) est mis sur la personne (qui que ce soit) qui aime faire souffrir les autres.

@alias sadique
(
racine  aimer, désirer
sujet qui que ce soit
objet 
(racine  faire souffrir,
objet  pluriel  autre personne).
).

***

Les noms de personnes, les adresses, les dates, les positions GPS, les nombres, les unités de mesure, les devises, les objets géographiques, les URL, etc. sont tous considérés comme des noms propres ou des références individuelles et sont mis entre crochets. Les douze premiers nombres entiers naturels sont néanmoins considérés comme des noms communs (ils “existent” en IEML et sont connectés aux nombres ordinaux, aux symétries, aux figures géométriques régulières, etc.). Les grandes zones géographiques existent également en IEML, sont considérées comme des catégories générales et peuvent être assimilés à des “codes postaux” qui donnent lieu à des calculs sémantiques. Ces codes permettent notamment de déterminer les positions respectives (au Nord, à l’Est, etc.) des zones codées, ainsi que de situer et regrouper les pays, les villes et autres objets géographiques.

*** 

Par exemple, pour dire “l’Italie” en IEML, on écrit:

(racine  Europe centre-sud <Italia>).

Expression dans laquelle “Europe centre sud” fait partie du paradigme des pays européens.

***

Pour dire “le nombre 292”, on écrit:

(racine  nombre <292>).

***

Pour dire “le nom d’un client”, on écrit:

(racine nom < Dupont >,
manière du  client).

Le lecteur contrastera l’approche d’IEML avec celle du Web sémantique, dans lequel les URI ne distinguent pas entre catégories générales et désignateurs rigides et ne peuvent pas faire l’objet de calculs sémantiques à partir de leur forme matérielle (une séquence de caractères). En fait, tous les URI sont des désignateurs rigides. Bien entendu, l’approche d’IEML et celle du web sémantique ne sont pas incompatibles puisque les expressions IEML valides ou USLs (Uniform Semantic Locators) ont une forme unique et peuvent se représenter comme des URIs.

L’auto-référence linguistique en IEML

On a vu plus haut que les USLs pouvaient contenir des noms propres, des nombres et autres expressions qui sont opaques au calcul sémantique IEML. Les USLs peuvent aussi faire référence à d’autres USLs, comme on peut le voir dans l’exemple ci-dessous.

***

@alias Bravo-Einstein!
(racine féliciter,
sujet singulier  première personne,
objet singulier  pronom deuxième personne <Einstein>).

***

(racine mode indicatif  moquer,
sujet cette  phrase <Bravo-Einstein!>,
objet  singulier  pronom deuxième personne).

***

BIBLIOGRAPHIE

Cormier Agathe. “Relecture pragmatique de Kripke pour une approche dialogique du nom propre”. 4e Congrès Mondial de Linguistique Française, Jul 2014, Berlin, Allemagne. p. 3059-3074

Frege Gottlob, “Sens et dénotation”. 1892. Trad. de C. Imbert. In Écrits logiques et philosophiques. Paris : Éditions du Seuil, 1971, 102-126.

Kripke Saul, Naming and Necessity, Oxford, Blackwell, 1980. Trad. fr. La logique des noms propres, Paris, Minuit, 1982, (trad. P. Jacob et F. Recanati).

Mill John Stuart, A System of Logic, 1843. Trad. fr. Mill, John Stuart, Système de logique déductive et inductive, trad. fr. L. Peisse Paris, Alcan, 1896. 

Récanati François, “La sémantique des noms propres : remarques sur la notion de « désignateur rigide»”. In: Langue française, n°57, 1983. Grammaire et référence, sous la direction de Georges Kleiber et Martin Riegel. pp. 106-118.

DOI : https://doi.org/10.3406/lfr.1983.5159 www.persee.fr/doc/lfr_0023-8368_1983_num_57_1_5159

Rosch Eleanor., “Cognitive Representations of Semantic Categories”, Journal of Experimental Psychology: General, Vol.104, No.3, September 1975, pp. 192–233.

Rosch Eleanor, “Natural categories”, Cognitive Psychology 1973 4, pp. 328-350.

Russell Bertrand. Human Knowledge: Its Scope and Limits. London: George Allen & Unwin (1948). Trad fr. La connaissance humaine : sa portée et ses limites. Trad. N. Lavand. Paris : J. Vrin, 2002

Vandendorpe, Christian, “Quelques considérations sur le nom propre. Pour un éclairage du linguistique par le cognitif et réciproquement”. In Langage et société, numéro 66, déc. 1993, p. 63-75.

Wittgenstein, Ludwig, Philosophical Investigations, (specially paragraph 79), Trad Anscombe, Basil Blackwell, 1958.

Articles de Wikipedia: 

https://en.wikipedia.org/wiki/Prototype_theory

https://en.wikipedia.org/wiki/Causal_theory_of_reference

https://en.wikipedia.org/wiki/Saul_Kripke

Ou comment passer d’un langage de métadonnées à une culture de l’intelligence collective…

L’ENJEU DES MÉTADONNÉES

Les métadonnées sont les données qui organisent les données. Les données sont comme les livres d’une bibliothèque et les métadonnées comme le fichier et le catalogue de la bibliothèque: leur fonction est d’identifier les livres afin de mieux les ranger et les retrouver. Les métadonnées servent moins à décrire exhaustivement les choses (il ne s’agit pas de faire des cartes à la même échelle que le territoire…) qu’à fournir des repères à partir desquels les utilisateurs pourront trouver ce qu’ils cherchent, avec l’aide d’algorithmes. Tous les systèmes d’information et applications logicielles organisent l’information au moyen de métadonnées. 

On peut distinguer… 

1) les métadonnées matérielles, comme le format d’un fichier, sa date de création, son auteur, sa licence d’utilisation, etc. 

2) les métadonnées sémantiques qui concernent le contenu d’un document ou d’un ensemble de données (de quoi ça parle) ainsi que leur dimension pratique (à quoi servent les données, à qui, dans quelles circonstances, etc.). 

Art: Emma Kunz

On s’intéresse ici principalement aux métadonnées sémantiques. Un système de métadonnées sémantiques peut être aussi simple qu’un vocabulaire. Au niveau de complexité supérieur cela peut être une classification hiérarchique ou taxonomie. Au niveau le plus complexe, c’est une “ontologie”, c’est-à-dire la modélisation d’un domaine de connaissance ou de pratique, qui peut contenir plusieurs taxonomies avec des relations transversales, y compris des relations causales et des possibilités de raisonnement automatique.  

Les métadonnées sémantiques représentent un élément essentiel des dispositifs d’intelligence artificielle :

– elles sont utilisées comme squelettes des graphes de connaissances (knowledge graphs) – ou bases de connaissances – mis en oeuvre par les big techs (Google, Facebook, Amazon, Microsoft, Apple…) et de plus en plus dans des grandes et moyennes entreprises,

– elles sont utilisées – sous le nom de “labels” – pour catégoriser les données d’entraînement des modèles de deep learning.

Parce qu’ils structurent la connaissance contemporaine, dont le support est numérique, les systèmes de métadonnées représentent un enjeu considérable aux niveaux scientifique, culturel, politique…  

Un des buts de ma compagnie INTLEKT Metadata Inc. est de faire de IEML (Information Economy MetaLanguage) un standard pour l’expression des systèmes de métadonnées sémantiques. Quel est le paysage contemporain dans ce domaine?

LE PAYSAGE DES MÉTADONNÉES SÉMANTIQUES AUJOURD’HUI

Formats Standards

Le système de formats et de “langages” standards proposé par le World Wide Web Consortium – W3C – (XML, RDF, OWL, SPARQL) pour atteindre le “Web Sémantique” existe depuis la fin du 20e siècle. Il n’a pas réellement pris, et notamment pas dans les entreprises en général et les big tech en particulier, qui utilisent des formats moins lourds et moins complexes, comme les “property graphs“. De plus, la catégorisation manuelle ou semi-manuelle des données est souvent remplacée par des approches statistiques d’indexation automatique (NLP, deep learning…), qui contournent la nécessité de concevoir des systèmes de métadonnées. Le système de standards du W3C concerne les *formats de fichiers et de programmes* traitant les métadonnées sémantiques mais *pas la sémantique proprement dite*, à savoir les catégories, concepts, propriétés, événements, relations, etc. qui sont toujours exprimées en langues naturelles, avec toutes les ambiguïtés, multiplicités et incompatibilités que cela implique.

Modèles standards

Au dessus de ce système de formats standards existent des modèles standards pour traiter le contenu proprement sémantique des concepts et de leurs relations. Par exemple schema.org pour les sites web, CIDOC-CRM pour le domaine culturel, etc. Il existe des modèles standard pour de très nombreux domaines, de la finance à la médecine. Le problème est qu’il existe souvent plusieurs modèles concurrents pour un domaine et que les modèles eux-mêmes sont hypercomplexes, au point que même les spécialistes d’un modèle n’en maîtrisent qu’une petite partie. De nouveau, ces modèles sont exprimés en langues naturelles, avec les problèmes que cela suppose… et le plus souvent en anglais. 

Systèmes de métadonnées particuliers

Les taxonomies, ontologies et autres systèmes de métadonnées mis en oeuvre dans des applications réelles pour organiser des ensembles de données sont le plus souvent des utilisations partielles des modèles standards et des formats standards. Les utilisateurs se soumettent – plus ou moins bien – à ces couches de standards dans l’espoir que leurs données et applications deviendront les heureux sujets d’un royaume de l’interopérabilité sémantique. Mais leurs espoirs sont déçus. L’idéal du Web intelligent décentralisé de la fin des années 1990 a cédé la place au search engine optimization (SEO) plus ou moins aligné sur le knowledge graph (secret!) de Google. Il faut bien reconnaître, près d’un quart de siècle après son lancement, que le Web Sémantique du W3C n’a pas tenu ses promesses.

Problèmes rencontrés 

Pour obtenir l’interopérabilité sémantique, c’est-à-dire la communication fluide entre bases de connaissance, les responsables de systèmes d’information se soumettent à des modèles et formats rigides. Mais à cause de la multitude des formats, des modèles et de leurs applications disparates, sans parler des différences de langues, ils n’obtiennent pas le gain attendu. De plus, produire un bon système de métadonnées coûte cher, car il faut réunir une équipe pluridisciplinaire comprenant : un chef de projet, un ou des spécialistes du domaine d’utilisation, un spécialiste de la modélisation formelle de type taxonomie ou ontologie (ingénierie cognitive) qui soit capable de se retrouver dans le labyrinthe des modèles standards et enfin un ingénieur informaticien spécialiste des formats de métadonnées sémantiques. Certaines personnes réunissent plusieurs de ces compétences, mais elles sont rares.

COMMENT IEML PEUT-IL RÉSOUDRE LES PROBLÈMES RENCONTRÉS DANS LE MONDE DES MÉTADONNÉES SÉMANTIQUES ? 

IEML en deux mots

IEML – aujourd’hui breveté par INTLEKT Metadata – n’est ni une taxonomie, ni une ontologie universelle, ni un modèle, ni un format: c’est une *langue* ou une *méta-ontologie* composée (1) de quelques milliers de primitives sémantiques organisées en paradigmes et (2) d’une grammaire entièrement régulière.

Caractéristiques uniques du langage IEML

IEML est “agnostique” quand aux formats, langues naturelles et relations hiérarchiques entre concepts. IEML permet de construire et de partager n’importe quel concept, hiérarchie de concepts ou relation entre concepts. IEML ne produit donc pas d’uniformisation ou d’aplatissement des possibilités expressives. Pourtant, IEML assure l’interopérabilité sémantique, c’est-à-dire la possibilité de fusionner, d’échanger, de recombiner, de connecter et de traduire quasi-automatiquement les systèmes de métadonnées et les bases de connaissances organisées par ces métadonnées. IEML permet donc de concilier le maximum d’originalité, de complexité ou de simplicité cognitive d’un côté et l’interopérabilité ou la communication de l’autre, contrairement à ce qui se passe dans la situation contemporaine où l’interopérabilité se “paye” par la réduction des possibilités expressives.

Fonctions uniques de l’éditeur IEML 

Autre avantage: contrairement aux principaux outils d’édition de métadonnées contemporains (Smart Logic Semaphore, Pool Party, Synaptica, Top Braid Composer) l’éditeur IEML conçu par INTLEKT sera intuitif (interface visuelle à base de tables et de graphes) et collaboratif. Il n’est pas destiné aux spécialistes de RDF et OWL (les formats standards), comme les éditeurs cités plus hauts, mais aux spécialistes des domaines d’applications. Une méthode accompagnant l’outil va aider les experts à formaliser leurs domaines en IEML. Le logiciel importera et exportera automatiquement les métadonnées dans les formats standards choisis par l’utilisateur. C’est ainsi que l’éditeur IEML permettra de réduire la complexité et le coût de la création des systèmes de métadonnées sémantiques. 

Marché des outils d’édition et de gestion des systèmes de métadonnées

On comprend aisément que, la masse des données produites ne cessant de croître, tout comme le besoin d’en extraire des connaissances utilisables, on ait de plus en plus besoin de créer et de maintenir de bons systèmes de métadonnées. Le marché des outils d’édition et de gestion des systèmes de métadonnées sémantiques représente aujourd’hui deux milliards de dollars et il pourrait atteindre (selon une estimation très conservatrice) seize milliards de dollars en 2026.  Cette projection agrège : 1) les données de l’industrie sémantique proprement dite (les entreprises qui créent des systèmes de métadonnées pour leurs clients), 2) les outils d’annotation sémantique des datasets d’entraînement pour le machine learning utilisés notamment par les data scientists, 3) la gestion des systèmes de métadonnées en interne par les big tech.

LES BUTS DE INTLEKT METADATA À L’HORIZON DE 5-10 ANS

La fondation

Nous voulons qu’IEML devienne un standard open-source pour les métadonnées sémantiques autour de 2025. Le standard IEML devra être supporté, maintenu et développé par une fondation à but non lucratif. Cette fondation supervisera aussi une communauté d’édition collaborative de systèmes de métadonnées en IEML et une base de  connaissance publique de données catégorisées en IEML. La fondation créera un écosystème socio-technique favorable à la croissance de l’intelligence collective.

L’entreprise privée

INTLEKT continuera à maintenir l’outil d’édition collaborative et à concevoir des bases de connaissances sémantiques sur mesure pour des clients solvables. Nous mettrons également en oeuvre un marché – ou système d’échange – des données privées indexées en IEML qui sera basé sur la blockchain. Les bases de connaissances indexées en IEML seront interopérables sur les plans parallèles de l’analyse des données, du raisonnement automatique et de l’entraînement des modèles neuronaux.

Néanmoins, avant d’arriver à ce point, INTLEKT doit démontrer l’efficacité d’IEML au moyen de plusieurs cas d’usage réels.

LE MARCHÉ D’INTLEKT METADATA À L’HORIZON DE 2-5 ANS

Des entretiens avec de nombreux clients potentiels nous ont permis de définir notre marché pour les années qui viennent. Définissons les domaines pertinents par élimination et approximations successives. 

Les affaires humaines

IEML n’est pas pertinent pour la modélisation d’objets purement mathématiques, physiques ou biologiques. Les sciences exactes disposent déjà de langages formels et de classifications reconnues. En revanche IEML est pertinent pour les objets des sciences humaines et des sciences sociales ou pour les interactions entre objets des sciences exactes et objets des sciences humaines, comme la technologie, la santé, l’environnement ou le phénomène urbain.

Les domaines non-standards

Dans l’immédiat, nous ne nous épuiserons pas à traduire en IEML tous les modèles de métadonnées existants: ils sont très nombreux, parfois contradictoires et rarement utilisés en totalité. Beaucoup d’utilisateurs de ces modèles se contentent d’en sélectionner une petite sous-partie utile et n’investiront pas leur temps et leur argent dans une nouvelle technologie sans nécessité. Par exemple, les nombreuses entreprises qui font du SEO (Search Engine Optimization) extraient un sous-ensemble utile des *classes* de schema.org (patronné par Google) et des *entités* de Wikidata (parce qu’elles sont réputées fiables par Google) et n’ont pas besoin de technologies sémantiques supplémentaires. Autres exemples: les secteurs des galeries, des musées, des bibliothèques ou des archives doivent se soumettre à des standards professionnels rigides avec des possibilités d’innovation limitées. En somme les secteurs qui se contentent d’utiliser un modèle standard existant ne font pas partie de notre marché à court terme. Nous ne mènerons pas de batailles perdues d’avance. A long terme, nous envisageons néanmoins une plateforme collaborative où pourra s’effectuer la traduction volontaire des modèles standards actuels en IEML.

Eliminons également le marché du commerce en ligne pour le moment. Ce secteur utilise bien des systèmes de catégories pour identifier les grands domaines (immobilier, voitures, électroménager, jouets, livres, etc…), mais la multitude des biens et services à l’intérieur de ces catégories assez larges est appréhendée par des systèmes de traitement automatique des langues naturelles ou d’apprentissage machine, plutôt que par des systèmes de métadonnées raffinés. Nous ne croyons pas à une adoption d’IEML à court terme dans le commerce en ligne.

Reste les domaines non-standards – qui n’ont pas de modèles tous faits – ou multi-standards – qui doivent construire des modèles hybrides ou des carrefours – et pour qui les approches statistiques sont utiles… mais pas suffisantes. Pensons par exemple à l’apprentissage collaboratif, à la santé publique, aux villes intelligentes, à la documentation du logiciel, à l’analyse de corpus complexes relevant de plusieurs disciplines, etc. 

La modélisation et la visualisation de systèmes complexes

Au sein des domaines non-standards, nous avons identifié les besoins suivants, qui ne sont pas comblés par les technologies sémantiques en usage aujourd’hui :

– La modélisation de systèmes humains complexes, où se rencontrent plusieurs “logiques” hétérogènes, C’est-à-dire des groupes obéissant à divers types de règles. Citons notamment les données produites par les processus de délibération, d’argumentation, de négociation et d’interaction techno-sociale.

– La modélisation de systèmes causaux, y compris les causalités circulaires et entrelacées.

– La modélisation de systèmes dynamiques au cours desquels les objets ou les actants se transforment. Ces dynamiques peuvent être de type : évolution, ontogénèse, hybridations successives, etc.

– L’exploration et la visualisation interactive 2D ou 3D de structures sémantiques dans des corpus immenses, de préférence sous une forme mémorable, c’est-à-dire facile à retenir. 

Dans les années qui viennent, INTLEKT se propose de modéliser de manière causale des systèmes dynamiques complexes impliquant la participation humaine et de donner accès à une exploration sensori-motrice mémorable de ces systèmes.

IEML étant une langue, tout ce qui peut se définir, se décrire et s’expliquer en langue naturelle peut être modélisé de manière formelle en IEML, fournissant ainsi un cadre qualitatif à des mesures et des calculs quantitatifs. On pourra faire du raisonnement automatique à partir de règles, de la prévision et de l’aide à la décision, mais le principal apport d’IEML sera d’augmenter les capacités, d’analyse, de synthèse, de compréhension mutuelle et de coordination dans l’action des communautés utilisatrices.

LES SIX PROCHAINS MOIS

La langue IEML existe déjà. Son élaboration a été financée à hauteur d’un million de dollars dans un cadre académique. Nous avons également un prototype de l’éditeur. Il nous faut maintenant passer à une version professionnelle de l’éditeur afin de pouvoir répondre aux besoins du marché identifié à la section précédente. Nous avons pour cela besoin d’un investissement privé d’environ 226 K US$, qui servira essentiellement au développement d’une plateforme d’édition collaborative pourvue de l’interface adéquate. Avis aux investisseurs.