Archives for posts with tag: IEML

Today, artificial intelligence is divided between two major trends: symbolic and statistical. The symbolic branch corresponds to what has been successively called in the last 70 years semantic networks, expert systems, semantic web and more recently, knowledge graphs. Symbolic AI codes human knowledge in the form of networks of relationships between concepts ruled by models and ontologies which give leverage to automatic reasoning. The statistical branch of AI trains algorithms to recognize visual, linguistic or other forms from large masses of data, relying on neural models roughly imitating the learning mode of the brain. Neuro-mimetic artificial intelligence has existed since the beginnings of computer science (see the work of McCulloch and von Foerster) but has only become useful because of the increase in computing power available since 2010. In the early 2020s, these two currents are merging according to a hybrid or neuro-symbolic model which seems very promising. Though many problems still remain, in terms of the consistency and interoperability of metadata.

Big tech companies and a growing number of scientific, economic and social sectors use knowledge graphs. Despite the availability of the WWW Consortium metadata standards for marking classifications and ontologies (RDF, OWL) the different sectors (see the slide below) do not communicate with each other and – even worse – divergent systems of categories and relationships are most often in use within the same domain. The interoperability of metadata standards – such as RDF – only addresses the compatibility of digital files. It should not be confused with true semantic interoperability, which addresses concept architectures and models. In reality, the problem of semantic interoperability has yet to be solved in 2021, and there are many causes for the opacity that plagues digital memory. Natural languages are multiple, informal, ambiguous and changing. Cultures and disciplines tend to divide reality in different ways. Finally, often inherited from the age of print, the numerous metadata systems in place to classify data are incompatible like thesauri, documentary languages, ontologies, taxonomies, folksonomies, sets of tags or hashtags, keywords, etc.

The Conundrum of Semantic Interoperability

There is currently no way to code linguistic meaning in a uniform and computable way, the way we code images using pixels or vectors for instance. To represent meaning, we are still using natural languages which are notoriously multiple, changing and ambiguous. With the notable exception of number notation and mathematical codes, our writing systems are primarily designed to represent sounds. Their representation of categories or concepts is indirect (characters → sound → concepts) and difficult for computers to grasp. Computers can handle syntax (the regular arrangement of characters), but their handling of semantics remains imperfect and laborious. Despite the success of machine translation (Deep L, Google translate) and automatic text generation (GPT3), computers don’t really understand the meaning of the texts they read or write.

Now, how can we resolve the problem of semantic interoperability and progress towards a thorough automatic processing of meaning? Many advances in computer science come from the invention of a relevant coding system making the coded object (number, image, sound, etc.) easily computable. The goal of our company INTLEKT Metadata Inc. has been to make concepts, categories or linguistic meaning systematically computable. In order to solve this problem, we have designed the Information Economy MetaLanguage: IEML. This metalanguage has a compact dictionary of less than 5000 words. IEML words are organized by subject-oriented paradigms and visualized as keyboards. The grammar of this metalanguage is completely regular and embedded in the IEML editor. Thank to this grammar, complex concepts and relations can be recursively constructed by combining simpler ones. It is not a super-ontology (like Cyc) but a programmable language (akin to a computable Esperanto) able to translate any ontology and to connect any possible categories. By using such a semantic code, artificial intelligence could take a giant step forward feeding collective intelligence.  Public health data from all countries would not only be able to communicate with each other, but could also harmonize with economic and social data. Occupational classifications and different international labour market statistics would automatically translate into each other. The AI of smart contracts, international e-commerce and the Internet of Things would exchange data and execute instructions based on automatic reasoning. Government statistics, national libraries, major museums and digital humanities research would feed into each other. On the machine learning side, we would reach a system of uniform and precise labels and annotations that would help AI to become more ethical, transparent, and efficient. A common semantic code would make it finally possible to achieve a de-fragmentation of the global memory and an integration of symbolic and statistical AI. The only price to pay for reaching neuro-symbolic collective intelligence would be a concerted effort for training specialists to translate metadata into IEML.

Check our prototype: https://dev.intlekt.io/

  • Once you are on the site, on the top right you can choose between french and english
  • “USL” (Uniform Semantic Locator) allows the search for words and paradigms in the dictionary
  • “Tags” gives you some examples of USLs groups by domain
  • If you are in “USL” the search for IEML expressions (instead of natural language translations) is done by typing * at the beginning of the query
  • Type: choose “all”
  • Class: filters nouns verbs or auxiliaries
  • Cardinality: choose “root” paradigms (big tables, or multi-tables paradigms), or the (small) tables, or singular = individual words. It is recommended to explore the dictionary by “roots”
  • When you click on a search result, the corresponding paradigm appears on the right.
  • The right panel present certain relations according to the selected words.

IEML is patented (provisional: US 63/124,924) and belongs to INTLEKT Metadata Inc.

Vassili Kandinsky: Circles in a Circle

A Scientific Language

IEML is an acronym for Information Economy MetaLanguage. IEML is the result of many years of fundamental research under the direction of Pierre Lévy, fourteen years of which were funded by the Canadian federal government through the Canada Research Chair in Collective Intelligence at the University of Ottawa (2002-2016). In 2020, IEML is the only language that has the following three properties:

– it has the expressive power of a natural language;

– it has the syntax of a regular language;

– its semantics is unambiguous and computable, because it is aligned with its syntax.

In other words, it is a “well-formed symbolic system”, which comprises a bijection between a set of relations between signifieds, or meanings (a language) and a set of relations between signifiers (an algebra) and which can be manipulated by a set of symmetrical and automatic operations. 

On the basis of these properties, IEML can be used as a concept coding system that solves the problem of semantic interoperability in an original way, lays the foundations for a new generation of artificial intelligence and allows collective intelligence to be reflexive. IEML complies with Web standards and can be exported in RDF. IEML expressions are called USLs (Uniform Semantic Locators). They can be read and translated into any natural language. Semantic ontologies – sets of IEML expressions linked by a network of relations – are interoperable by design. IEML provides the coordinate system of a common knowledge base that feeds both automatic reasoning and statistical calculations. In sum, IEML fulfills the promise of the Semantic Web through its computable meaning and interoperable ontologies. IEML’s grammar consists of four layers: elements, words, sentences and texts. Examples of elements and words can be found at https://dev.intlekt.io/.

Elements

The semantic elements are the basic building blocks, or elementary concepts, from which all language expressions are composed. A dictionary of about 5000 elements translated into natural languages is given with IEML and shared among all its users. Semantic interoperability comes from the fact that everyone shares the same set of elements whose meanings are fixed. The dictionary is organized into tables and sub-tables related to the same theme and the elements are defined reciprocally through a network of explicit semantic relations. IEML allows the design of an unlimited variety of concepts from a limited number of elements. 

Exemple of an elements paradigm in the IEML dictionary

The user does not have to worry about the rules from which the elements are constructed. However, they are regularly generated from six primitive symbols forming the “layer 0” of the language, and since the generative operation is recursive, the elements are stratified on six layers above layer 0.

Words

Using the elements dictionary and grammar rules, users can freely model a field of knowledge or practice within IEML. These models can be original or translate existing classifications, ontologies or semantic metadata.

The basic unit of an IEML sentence is the word. A word is a pair composed of two small sets of elements: the radical and the inflection. The choice of radical elements is free, but inflection elements are selected from a closed list of elements tables corresponding to adverbs, prepositions, postpositions, articles, conjugations, declensions, modes, etc. (see “auxiliary morphemes” in https://dev.intlekt.io/)

Each word or sentence corresponds to a distinct concept that can be translated, according to its author’s indications and its grammatical role, as a verb (encourage), a noun (courage), an adjective (courageous) or an adverb (bravely). 

Sentences 

The words are distributed on a grammatical tree composed of a root (verbal or nominal) and eight leaves corresponding to the roles of classical grammar: subject, object, complement of time, place, etc. 

The nine grammatical roles

Nine grammatical roles

The Root of the sentence can be a process (a verb), a substance, an essence, an affirmation of existence… 

The Initiator is the subject of a process, answering the question “who?” He can also define the initial conditions, the first motor, the first cause of the concept evoked by the root.

The Interactant corresponds to the object of classical grammar. It answers the question “what”. It also plays the role of medium in the relationship between the initiator and the recipient. 

The Recipient is the beneficiary (or the victim) of a process. It answers the questions “for whom, to whom, towards whom?”. 

The Time answers the question “when?”. It indicates the moment in the past, the present or the future and gives references as to anteriority, posteriority, duration, date and frequency. 

The Place answers the question “where?”. It indicates the location, spatial distribution, pace of movement, paths, paths, spatial relationships and metaphors. 

The Intention answers the question of finality, purpose, motivation: “for what”, “to what end?”It concerns mental orientation, direction of action, pragmatic context, emotion or feeling.

The Manner answers the questions “how?” and “how much?”. It situates the root on a range of qualities or on a scale of values. It specifies quantities, gradients, measurements and sizes. It also indicates properties, genres and styles.

The Causality answers the question “why? It specifies logical, material and formal determinations. It describes causes that have not been specified by the initiator, the interactant or the recipient: media, instruments, effects, consequences. It also describes the units of measurement and methods. It may also specify rules, laws, reasons, points of view, conditions and contracts.

For example: Robert (initiator) offers (root-process) a (interactant) gift to Mary (recipient) today (time) in the garden (place), to please her (intention), with a smile (manner), for her birthday (causality). 

Junctions 

IEML allows the junction of several words in the same grammatical role. This can be a logical connection (and, or inclusive or exclusive), a comparison (same as, different from), an ordering (larger than, smaller than…), an antinomy (but, in spite of…), and so on.

Layers of complexity

Grammatical roles of a complex sentence

A word that plays one of the eight leaf roles at complexity layer 1 can play the role of secondary root at a complexity layer 2, and so on recursively up to layer 4.

Literals

IEML strictly speaking enables only general categories or concepts to be expressed. It is nevertheless possible to insert numbers, units of measurement, dates, geographical positions, proper names, etc. into a sentence, provided they are categorized in IEML. For example t.u.-t.u.-‘. [23] means ‘number: 23’. Individual names, numbers, etc. are called literals in IEML.

Texts 

Relations 

A semantic relationship is a sentence in a special format that is used to link a source node (element, word, sentence) to a target node. IEML includes a query language enabling easy programming of semantic relationships on a set of nodes. 

By design, a semantic relationship makes the following four points explicit.

1. The function that connects the source node and the target node.

2. The mathematical form of the relation: equivalence relationship, order relationship, intransitive symmetrical relationship or intransitive asymmetrical relationship.

3. The kind of context or social rule that validates the relationship: syntax, law, entertainment, science, learning, etc.

4. The content of the relationship: logical, taxonomic, mereological (whole-part relationship), temporal, spatial, quantitative, causal, or other. The relation can also concern the reading order or the anaphora.

The (hyper) textual network

An IEML text is a network of semantic relationships. This network can describe linear successions, trees, matrices, cliques, cycles and complex subnetworks of all types.

An IEML text can be considered as a theory, an ontology, or a narrative that accounts for the dataset it is used to index.

We can define a USL as an ordered (normalized) set of triples of the form : (a source node, a target node, a relationship sentence).  A set of such triples describes a semantic network or IEML text. 

The following special cases should be noted:

– A network may contain only one sentence.

– A sentence may contain only one root to the exclusion of other grammatical roles.

– A root may contain only one word (no junction).

– A word may contain only one element.

******* 

In short, IEML is a language with computable semantics that can be considered from three complementary points of view: linguistics, mathematics and computer science. Linguistically, it is a philological language, i.e. it can translate any natural language. Mathematically, it is a topos, that is, an algebraic structure (a category) in isomorphic relation with a topological space (a network of semantic relations). Finally, on the computer side, it functions as the indexing system of a virtual database and as a programming language for semantic networks.

L’Ecole d’Athènes par Raphael

Un langage scientifique

IEML est un acronyme pour Information Economy MetaLanguage ou, en français : le métalangage de l’économie de l’information. IEML est le fruit de trente ans de recherche fondamentale sous la direction de Pierre Lévy dont quatorze ans ont été financés par le gouvernement fédéral canadien dans le cadre de la Chaire de Recherche du Canada en Intelligence Collective à l’Université d’Ottawa (2002-2016). IEML est en 2020 le seul langage qui possède les trois propriétés suivantes :

  • il a la puissance d’expression d’une langue naturelle ;
  • il possède la syntaxe d’un langage régulier ;
  • sa sémantique est univoque et calculable, parce qu’elle est alignée sur sa syntaxe.

En d’autres termes, c’est un « système symbolique bien formé », qui comporte une bijection entre un ensemble de relations entre signifiés (une langue) et un ensemble de relations entre signifiants (une algèbre) et qui peut être manipulé par un ensemble d’opérations symétriques et automatisables.

Sur la base de ces propriétés, on peut utiliser IEML comme un système de codage des concepts qui résoud de manière originale le problème de l’interopérabilité sémantique, pose les bases d’une nouvelle génération d’intelligence artificielle et autorise une réflexivité de l’intelligence collective. IEML respecte les standards du Web et s’exporte en RDF. Les expressions IEML sont appelées des USLs (Uniform Semantic Locators). Elles se lisent et se traduisent dans n’importe quelle langue naturelle. Les ontologies sémantiques – ensembles d’expressions IEML liés par un réseau de relations – sont interopérables par construction. IEML fournit le système de coordonnées d’une base de connaissances commune qui alimente aussi bien les raisonnements automatiques que les calculs statistiques. En somme, IEML accomplit la promesse du Web sémantique grâce à sa signification calculable et à ses ontologies inter-opérables. La grammaire d’IEML se décompose en trois couches : les éléments, les mots, les phrases et les textes. On trouvera des exemples d’éléments et de mots à l’adresse https://dev.intlekt.io/.

Les éléments

Les éléments sont les briques de base, ou concepts élémentaires, à partir desquelles toutes les expressions du langage sont composées. Un dictionnaire d’environ 5000 éléments traduits en langues naturelles est donné avec le langage et partagé entre tous ses utilisateurs. L’inter-opérabilité sémantique vient du fait que tout le monde partage le même ensemble d’éléments dont les sens sont fixés. Le dictionnaire est organisé en tables et sous-tables se rapportant à un même thème et les éléments se définissent réciproquement grâce à un réseau de relations sémantiques explicites. IEML autorise la conception d’une variété illimitée de concepts à partir d’un nombre limité d’éléments.

Exemple d’une table d’éléments

L’utilisateur n’a pas à se soucier des règles à partir desquelles les éléments sont construits. Sachons toutefois qu’ils sont engendrés de manière régulière à partir de six symboles primitifs qui forment la couche 0 du langage et que, l’opération générative étant récursive, les éléments s’étagent sur six couches au-dessus de la couche zéro.

Les mots  

A partir du dictionnaire des éléments et des règles de grammaire, les utilisateurs peuvent librement modéliser un domaine de connaissance ou de pratique en IEML. Ces modèles peuvent être originaux ou traduire des métadonnées sémantiques existantes. 

L’unité de base des phrases est le mot. Un mot est un couple composé de deux petits ensembles d’éléments : le radical et la flexion. Le choix des éléments de radical est libre mais les éléments de flexion sont sélectionnés dans une liste fermée de tables d’éléments correspondant à des adverbes, prépositions, postpositions, articles, conjugaisons, déclinaisons, modes, etc. (voir les « morphèmes auxiliaires » dans https://dev.intlekt.io/)

Chaque mot correspond à un concept distinct qui pourra se traduire, selon les indications de son auteur et son rôle grammatical, comme un verbe (encourager), un nom (courage), un adjectif (courageux) ou un adverbe (courageusement). 

Les phrases

Les mots se distribuent sur un arbre syntagmatique composé d’une racine (verbale ou nominale) et de huit feuilles correspondant aux rôles de la grammaire classique : sujet, objet, complément de temps, de lieu, etc.

Les neuf rôles grammaticaux

Les neuf rôles grammaticaux

  • La racine de la phrase peut être un process (un verbe), une substance, une essence, l’affirmation d’une existence… 
  • L’initiateur est le sujet d’un process. Il répond à la question « qui? ». Il peut aussi définir les conditions initiales, le premier moteur, la cause première du concept évoqué par la phrase.
  • L’interactant correspond à l’objet de la grammaire classique. Il répond à la question « quoi? ». Il joue aussi le rôle de médium dans la relation entre l’initiateur et le destinataire. 
  • Le destinataire est le bénéficiaire (ou la victime) d’un process. Il répond aux questions « pour qui, à qui, envers qui? » 
  • Le temps répond à la question « quand? ». Il indique le moment dans le passé, le présent, ou le futur et donne des repères quant à l’antériorité, la postériorité, la durée, la date, la fréquence. 
  • Le lieu répond à la question « où? ». Il indique la localisation, la distribution dans l’espace, l’allure du mouvements, les trajets, les chemins, les relations et métaphores spatiales. 
  • L’intention répond à la question de la finalité, du but, de la motivation : « pour quoi? » « A quelle fin? » Il concerne l’orientation mentale, la direction de l’action, le contexte pragmatique, l’émotion ou le sentiment.
  • La manière répond aux questions « comment? » et « combien? ». Elle situe la phrase sur une gamme de qualités ou sur une échelle de valeurs. Elle spécifie les quantités, gradients, mesures et tailles. Elle indique aussi les propriétés, les genres et les styles.
  • La causalité répond à la question « pourquoi? ». Elle précise les déterminations logiques, matérielles et formelles. Elle décrit les causes qui n’ont pas été spécifiées par l’initiateur, l’interactant ou le destinataire : médias, instruments, effets, conséquences. Elle décrit également les unités de mesure et les méthodes. Elle peut également spécifier les règles, lois, raisons, points de vue, conditions et contrats.

Par exemple : Robert (initiateur) offre (racine-process) un cadeau (interactant) à Marie (destinataire) aujourd’hui (temps) dans le jardin (lieu), pour lui faire plaisir (intention), en souriant (manière), pour son anniversaire (causalité).

Les jonctions 

IEML autorise la jonction de plusieurs mots dans le même rôle syntagmatique. Il peut s’agir d’une connexion logique (et, ou inclusif ou bien exclusif), d’une comparaison (même que, différent de), d’un rangement (plus grand que, plus petit que…), d’une antinomie (mais, malgré…), etc.

Les couches de complexité 

Les rôles grammaticaux d’une phrase complexe

Un mot qui joue l’un des huit rôles de feuille dans la couche de complexité 1 peut jouer le rôle de racine secondaire dans la couche de complexité 2, et ainsi de suite récursivement jusqu’à la couche 4.

Les littéraux

IEML stricto sensu ne permet d’exprimer que des catégories ou des concepts généraux. Il est néanmoins possible d’insérer dans une phrase des nombres, des unités de mesure, des dates, des positions géographiques, des noms propres et autres à condition de les catégoriser en IEML. Par exemple t.u.-t.u.-‘ [23] signifie « nombre : 23 ». Les noms d’individus, les nombres, etc. sont appelés littéraux en IEML.

Les textes 

Les relations 

Une relation sémantique est une phrase d’un format spécial qui sert à lier un noeud de départ (élément, mot, phrase) à un noeud d’arrivée. IEML inclut un langage de requête permettant de programmer facilement des relations sémantiques sur un ensemble de noeuds. 

Par construction, une relation sémantique explicite les quatre points qui suivent.

  1. La fonction qui relie le noeud de départ et le noeud d’arrivée.
  2. La forme mathématique de la relation : relation d’équivalence, relation d’ordre, relation symétrique intransitive ou relation asymétrique intransitive.
  3. Le genre de contexte ou de règle sociale qui valide la relation : syntaxique, légal, ludique, scientifique, pédagogique, etc.
  4. Le contenu de la relation : logique, taxinomique, méréologique (rapport tout-partie), temporelle, spatiale, quantitative, causale ou autre. La relation peut également concerner l’ordre de lecture des phrases ou l’anaphore.

Le réseau (hyper) textuel 

Un texte IEML est un réseau de relations sémantiques. Ce réseau peut décrire des successions linéaires, des arbres, des matrices, des cliques, des cycles et des sous-réseaux complexes de tous types.

Un texte IEML peut être considéré comme une théorie, une ontologie ou un récit censé rendre compte de l’ensemble de données qu’il sert à indexer.

Nous pouvons définir un USL comme un ensemble ordonné (normalisé) de triplets de la forme : (un noeud de départ, un noeud d’arrivée, un noeud de relation). Un tel ensemble de triplets décrit un réseau sémantique ou texte IEML. 

On notera les cas particuliers suivants :

  • Le réseau, ou texte, peut ne contenir qu’une seul phrase.
  • La phrase peut ne contenir qu’une racine à l’exclusion des autres rôles grammaticaux.
  • La racine peut ne contenir qu’un mot (pas de jonction).
  • Le mot peut ne contenir qu’un seul élément.

*******

En somme, IEML est une langue à la sémantique calculable qui peut être considérée de trois points de vue complémentaires : linguistique, mathématique et informatique. Sur le plan linguistique, il s’agit d’une langue philologique, c’est-à-dire qu’elle peut traduire n’importe quelle langue naturelle. Sur le plan mathématique, c’est un topos, c’est à dire une structure algébrique (une catégorie) en rapport d’isomorphisme avec un espace topologique (un réseau de relations sémantiques). Enfin, sur le plan informatique, elle fonctionne comme le système d’indexation d’une base de données virtuelle et comme un langage de programmation de réseaux sémantiques.

Plus de 60% de la population humaine est connectée à l’Internet, la plupart des secteurs d’activité ont basculé dans le numérique et le logiciel pilote l’innovation. Or les normes et protocoles de l’Internet ont été inventés à une époque où moins d’un pour cent de la population était connectée. Il est temps d’utiliser les flots de données, la puissance de calcul disponible et les nouvelles possibilités de communication interactive au service du développement humain… et de la solution des graves problèmes auxquels nous sommes confrontés. C’est pourquoi je vais lancer bientôt un projet international – comparable à la construction d’un cyclotron ou d’un voyage vers Mars – autour d’une transcroissance de l’Internet au service de l’intelligence collective.

Saturne (photo Voyager)

Ce projet vise plusieurs objectifs interdépendants : 

  • Décloisonner la mémoire numérique et assurer son interopérabilité sémantique (linguistique, culturelle et disciplinaire).
  • Ouvrir les modes d’indexation et maximiser la diversité des interprétations de la mémoire numérique.
  • Fluidifier la communication entre les machines, mais aussi entre les humains et les machines afin d’assurer notre maîtrise collective sur l’internet des choses, les villes intelligentes, les robots, les véhicules autonomes, etc.
  • Etablir de nouvelles formes de modélisation et d’observation réflexive de l’intelligence collective humaine sur la base de notre mémoire partagée.

IEML

Le fondement technique de ce projet est IEML (Information Economy MetaLanguage), un système de métadonnées sémantiques que j’ai inventé, notamment grâce au soutien du gouvernement fédéral canadien. IEML possède :

  • la puissance d’expression d’une langue naturelle, 
  • la syntaxe d’un langage régulier, 
  • une sémantique calculable alignée sur sa syntaxe.

IEML s’exporte en RDF et il est basé sur les standards du Web. Les concepts IEML sont appelés des USLs (Uniform Semantic Locators). Ils se lisent et se traduisent dans n’importe quelle langue naturelle. Les ontologies sémantiques  – ensembles d’USLs liés par un réseau de relations – sont interopérables par construction. IEML établit une base de connaissances virtuelle qui alimente aussi bien les raisonnements automatiques que les calculs statistiques. En somme, IEML accomplit la promesse du Web sémantique grâce à sa signification calculable et à ses ontologies inter-opérables.

Pour une courte description de la grammaire d’IEML cliquez

Intlekt

Le système des URL et la norme http ne deviennent utiles que grâce à un navigateur. De la même manière, le nouveau système d’adressage sémantique de l’Internet basé sur IEML nécessite une application particulière, nommée Intlekt, dont le chef de projet technique est Louis van Beurden. Intlekt est une plateforme collaborative et distribuée qui supporte l’édition de concepts, la curation de données et de nouvelles formes de recherche, de fouille et de visualisation de données. 

Intlekt permet d’éditer et publier des ontologies sémantiques – ensembles de concepts en relation – liés à un domaine de pratique ou de connaissance. Ces ontologies peuvent être originales ou traduire des métadonnées sémantiques existantes telles que : thésauri, langages documentaires, ontologies, taxonomies SKOS, folksonomies, ensembles de tags ou de hashtags, mots-clés, têtes de colonnes et de rangées, etc. Les ontologies sémantiques publiées augmentent un  dictionnaire de concepts, que l’on peut considérer comme une méta-ontologie ouverte

Intlekt est également un outil de curation de données. Il permet d’éditer, d’indexer en IEML et de publier des collections de données qui viennent alimenter une base de connaissance commune. A terme, on pourra utiliser des algorithmes statistiques pour automatiser l’indexation sémantique des données.

Enfin, Intlekt exploite les propriétés d’IEML pour autoriser de nouvelles formes de search, de raisonnement automatique et de simulation de systèmes complexes.

Des applications particulières peuvent être imaginées dans de nombreux domaines comme:

  • la préservation des héritages culturels, 
  • la recherche en sciences humaines et les humanités numériques, 
  • l’éducation et la formation
  • la santé publique, 
  • la délibération démocratique informée, 
  • les transactions commerciales, 
  • les contrats intelligents, 
  • l’Internet des choses, 
  • etc.

Et maintenant?

Où en sommes-nous de ce projet à l’été 2020 ? Après de nombreux essais qui se sont étalés sur plusieurs années, la grammaire d’IEML s’est stabilisée ainsi que la base de mots d’environ 3000 unités qui permet de construire à volonté n’importe quel concept. J’ai testé positivement les possibilités expressives du langage sur plusieurs domaines des sciences humaines et des sciences de la terre. Néanmoins, au moment où j’écris ces lignes, le dernier état de la grammaire n’est pas encore implémenté. De plus, pour obtenir une version d’Intlekt qui supporte les fonctions d’édition d’ontologies sémantiques, de curation de données et de fouille décrites plus haut, il faut compter une équipe de plusieurs programmeurs travaillant pendant un an. Dans les mois qui viennent, les amis d’IEML vont s’activer à réunir cette masse critique. 

Rejoignez-nous!

Pour plus d’information, consultez:
INTLEKT.io 

https://pierrelevyblog.com/my-research-in-a-nutshell/

et https://pierrelevyblog.com/my-research-in-a-nutshell/the-basics-of-ieml/

More than 60% of the human population is connected to the Internet, most sectors of activity have switched to digital and software drives innovation. Yet Internet standards and protocols were invented at a time when less than one percent of the population was connected. It is time to use the data flows, the available computing power and the possibilities of interactive communication for human development… and to solve the serious problems we are facing. That is why I will launch soon a major international project – comparable to the construction of a cyclotron or a voyage to Mars – aiming at an augmentation of the Internet in the service of collective intelligence.

This project has several interrelated objectives: 

  • Decompartmentalize digital memory and ensure its semantic (linguistic, cultural and disciplinary) interoperability.
  • Open up indexing modes and maximize the diversity of interpretations of the digital memory.
  • Make communication between machines, but also between humans and machines, more fluid in order to enforce our collective mastery of the Internet of Things, intelligent cities, robots, autonomous vehicles, etc.
  • Establish new forms of modeling and reflexive observation of human collective intelligence on the basis of our common memory.

IEML

The technical foundation of this project is IEML (Information Economy MetaLanguage), a semantic metadata system that I invented with support from the Canadian federal government. IEML has :

  • the expressive power of a natural language, 
  • the syntax of a regular language, 
  • calculable semantics aligned with its syntax.

IEML is exported in RDF and is based on Web standards. IEML concepts are called USLs (Uniform Semantic Locators). They can be read and translated into any natural language. Semantic ontologies – sets of USLs linked by a network of relationships – are conceptually interoperable by design. IEML establishes a virtual knowledge base that feeds both automatic reasoning and statistical calculations. In short, IEML fulfills the promise of the Semantic Web through its computable meaning and interoperable ontologies.

For a short description of the IEML grammar, click here.

Intlekt

The URLs system and the http standard only become useful through a browser. Similarly, the new IEML-based semantic addressing system for the Internet requires a special application, let’s call it INTLEKT for the moment. It is a collaborative and distributed platform that supports concept editing, data curation and new forms of search, data mining and data visualization. 

Intlekt empowers the edition and publishing of semantic ontologies – sets of linked concepts – related to a field of practice or knowledge. These ontologies can be original or translate existing semantic metadata such as: thesauri, documentary languages, ontologies, SKOS taxonomies, folksonomies, sets of tags or hashtags, keywords, column and row headings, etc. Published semantic ontologies augment a dictionary of concepts, which can be considered as an open meta-ontology

Intlekt is also a data curation tool. It enables editing, indexing in IEML and publishing data collections that feed a common knowledge base. Eventually, statistical algorithms will be used to automate the semantic indexing of data.

Finally, Intlekt exploits the properties of IEML to allow new forms of search, automatic reasoning and simulation of complex systems.

Special applications can be imagined in many areas, like:

  • the preservation of cultural heritage, 
  • research in the humanities (digital humanities), 
  • education and training
  • public health, 
  • informed democratic deliberation, 
  • commercial transactions, 
  • smart contracts, 
  • the Internet of things, 
  • and so on…

And now, what?

Where do we stand on this project in the summer of 2020? After many tests over several years, IEML’s grammar has stabilized, as well as the base of elementary concepts of about 3000 units, which enables any complex concept to be built at will. I tested positively the expressive possibilities of the language in several fields of humanities and earth sciences. Moreover, to obtain a version of Intlekt that enables the semantic ontology editing, data curation and data mining functions described above, a team of several programmers working for one year is needed.

Come and join us!

For more information: https://intlekt.io/

DESCRIPTION GÉNÉRALE D’IEML
IEML est une langue à la fois formelle et philologique (ayant la même puissance qu’une langue naturelle), dont la sémantique est calculable et qui possède des fonctions de calcul logique et pragmatique. Elle est conçue pour être utilisée dans un environnement numérique pour la catégorisation des données, l’intelligence artificielle et les interfaces homme/machine.
Le métalangage de l’économie de l’information, en bref IEML (Information Economy MetaLanguage) est un projet multidimensionnel à la confluence de l’informatique, des sciences de l’information, de la linguistique et de la philosophie. Parce qu’il rend la sémantique (la signification) calculable, IEML intéressera les personnes travaillant dans les domaines de l’intelligence artificielle, du renseignement économique et de la « science des données ». Parce qu’il propose un renouvellement des usages et de la théorie des métadonnées, il est pertinent pour les chercheurs dans les domaines de la conservation des patrimoines (bibliothèques, musées), des humanités numériques et du journalisme de données. Enfin, et ce n’est pas la moindre de ses qualités, puisque IEML augmente l’intelligence collective, il devrait intéresser les praticiens de la gestion des connaissances, de l’apprentissage collaboratif et des communications numériques.

Mark Rothko Mural, Section 6 {Untitled} [Seagram Mural], 1959

PREMIER SÉMINAIRE IEML

Le premier séminaire IEML (Information Economy Meta Language) aura lieu à l’Université de Montréal au semestre d’Automne 2019, sous l’égide de la Chaire de Recherche du Canada en Ecritures Numériques dirigée par le Prof. Marcello Vitali-Rosati et le Centre de Recherche Inter-universitaire sur les Humanités Numériques dirigé par le prof. Michael Sinatra.

Le séminaire sera donné par le prof. Pierre Lévy, inventeur d’IEML et membre de la Société Royale du Canada. Le séminaire est libre et gratuit, il sera diffusé en ligne. Aucune formalité d’inscription n’est nécessaire, mais il faut tout de même devenir membre du Groupe Facebook du séminaire: Groupe Facebook IEML

CONTENU THÉORIQUE

  1. La finalité et les grands principes d’IEML, une langue à la sémantique calculable.
  2. Premier niveau de complexité: morphèmes et paradigmes de morphèmes
  3. Deuxième niveau de complexité: mots et fonctions lexicales
  4. Troisième niveau de complexité: phrases, fonctions logiques et illocutoires

ACQUISITION DE COMPÉTENCES PRATIQUES:
CONSTRUIRE UN LEXIQUE IEML

  1. Modéliser un domaine de connaissance et/ou de pratique
  2. Traduire ce modèle en un ensemble de paradigmes lexicaux
  3. Utiliser l’application Intlekt (une Github App) pour générer les paradigmes lexicaux et enrichir le lexique IEML

RÉFÉRENCES ET LIENS UTILES
La Sphère Sémantique, Hermès / Wiley, 2011 (fondements philosophiques et scientifiques du projet IEML)
Intlekt (application d’édition IEML)
Github IEML (base de données IEML)
Groupe Facebook du séminaire

HORAIRE

Le séminaire aura lieu tous les mercredis de 13h à 16h à partir du 2 octobre jusqu’au 11 décembre. Lieu: salle C-8132 (Pavillon Lionel Groulx 8e étage). Il y aura en tout dix séances, la date du congé de mi-session est le 23 octobre.

Pour suivre le séminaire en direct sur internet: https://meet.jit.si/ieml

ENREGISTREMENT

Un problème technique a empêché d’enregistrer la première séance

Enregistrement de la deuxième séance :
Première partie: https://archive.org/details/ieml_2019-1009_seance2_premierePartie
Seconde partie: https://archive.org/details/iemlon201910091951

Enregistrement de la troisième séance :
Première partie : https://archive.org/details/iemlon201910161833
Deuxième partie : https://archive.org/details/iemlon201910161859
Troisième partie : https://archive.org/details/iemlon201910162000

Enregistrement de la quatrième séance :
Première partie : https://archive.org/details/iemlon201910301717
Deuxième partie : https://archive.org/details/iemlon201910301833
Troisième partie : https://archive.org/details/iemlon201910301951

Enregistrement de la cinquième séance :
Première partie: https://archive.org/details/iemlon201911061925
Deuxième partie: https://archive.org/details/iemlon201911062039

Enregistrement de la sixième séance :
Première partie : https://archive.org/details/iemlon201911131926
Deuxième partie: https://archive.org/details/iemlon201911132055

Enregistrement de la septième séance : https://archive.org/details/iemlon201911202058

Enregistrement de la huitième séance :
Première partie : https://archive.org/details/iemlon201911271921
Deuxième partie: https://archive.org/details/iemlon201911272027

Enregistrement de la dernière séance
Première partie : https://archive.org/details/iemlon201912041924
Deuxième partie : https://archive.org/details/iemlon201912042044

IEML (the Information Economy Meta Language) has four main directions of research and development in 2019: in mathematics, data science, linguistics and software development. This blog entry reviews them successively.

1- A mathematical research program

I will give here a philosophical description of the structure of IEML, the purpose of the mathematical research to come being to give a formal description and to draw from this formalisation as much useful information as possible on the calculation of relationships, distances, proximities, similarities, analogies, classes and others… as well as on the complexity of these calculations. I had already produced a formalization document in 2015 with the help of Andrew Roczniak, PhD, but this document is now (2019) overtaken by the evolution of the IEML language. The Brazilian physicist Wilson Simeoni Junior has volunteered to lead this research sub-program.

IEML Topos

The “topos” is a structure that was identified by the great mathematician Alexander Grothendieck, who “is considered as the re-founder of algebraic geometry and, as such, as one of the greatest mathematicians of the 20th century” (see Wikipedia).

Without going into technical details, a topos is a bi-directional relationship between, on the one hand, an algebraic structure, usually a “category” (intuitively a group of transformations of transformation groups) and, on the other hand, a spatial structure, which is geometric or topological. 

In IEML, thanks to a normalization of the notation, each expression of the language corresponds to an algebraic variable and only one. Symmetrically, each algebraic variable corresponds to one linguistic expression and only one. 

Topologically, each variable in IEML algebra (i.e. each expression of the language) corresponds to a “point”. But these points are arranged in different nested recursive complexity scales: primitive variables, morphemes of different layers, characters, words, sentences, super-phrases and texts. However, from the level of the morpheme, the internal structure of each point – which comes from the function(s) that generated the point – automatically determines all the semantic relationships that this point has with the other points, and these relationships are modelled as connections. There are obviously a large number of connection types, some very general (is contained in, has an intersection with, has an analogy with…) others more precise (is an instrument of, contradicts X, is logically compatible with, etc.).

The topos that match all the expressions of the IEML language with all the semantic relationships between its expressions is called “The Semantic Sphere”.

Algebraic structure of IEML

In the case of IEML, the algebraic structure is reduced to 

  • 1. Six primitive variables 
  • 2. A non-commutative multiplication with three variables (substance, attribute and mode). The IEML multiplication is isomorphic to the triplet ” departure vertex, arrival vertex, edge ” which is used to describe the graphs.
  • 3. A commutative addition that creates a set of objects.

This algebraic structure is used to construct the following functions and levels of variables…

1. Functions using primitive variables, called “morpheme paradigms”, have as inputs morphemes at layer n and as outputs morphemes at layer n+1. Morpheme paradigms include additions, multiplications, constants and variables and are visually presented in the form of tables in which rows and columns correspond to certain constants.

2. “Character paradigms” are complex additive functions that take morphemes as inputs and characters as outputs. Character paradigms include a group of constant morphemes and several groups of variables. A character is composed of 1 to 5 morphemes arranged in IEML alphabetical order. (Characters may not include more than five morphemes for cognitive management reasons).

3. IEML characters are assembled into words (a substance character, an attribute character, a mode character) by means of a multiplicative function called a “word paradigm”. A word paradigm intersects a series of characters in substance and a series of characters in attribute. The modes are chosen from predefined auxiliary character paradigms, depending on whether the word is a noun, a verb or an auxiliary. Words express subjects, keywords or hashtags. A word can be composed of only one character.

4. Sentence building functions assemble words by means of multiplication and addition, with the necessary constraints to obtain grammatical trees. Mode words describe the grammatical/semantic relationships between substance words (roots) and attribute words (leaves). Sentences express facts, proposals or events; they can take on different pragmatic and logical values.

5. Super-sentences are generated by means of multiplication and addition of sentences, with constraints to obtain grammatical trees. Mode sentences express relationships between substance sentences and attribute sentences. Super-sentences express hypotheses, theories or narratives.

6. A USL (Uniform Semantic Locator) or IEML text is an addition (a set) of words, sentences and super-sentences. 

Topological structure of IEML: a semantic rhizome

Static

The philosophical notion of rhizome (a term borrowed from botany) was developed on a philosophical level by Deleuze and Guattari in the preface to Mille Plateaux (Minuit 1980). In this Deleuzo-Guattarian lineage, by rhizome I mean here a complex graph whose points or “vertices” are organized into several levels of complexity (see the algebraic structure) and whose connections intersect several regular structures such as series, tree, matrix and clique. In particular, it should be noted that some structures of the IEML rhizome combine hierarchical or genealogical relationships (in trees) with transversal or horizontal relationships between “leaves” at the same level, which therefore do not respect the “hierarchical ladder”. 

Dynamic

We can distinguish the abstract, or virtual, rhizomatic grid drawn by the grammar of the language (the sphere to be dug) and the actualisation of points and relationships by the users of the language (the dug sphere of chambers and galleries).  Characters, words, sentences, etc. are all chambers in the centre of a star of paths, and the generating functions establish galleries of “rhizomatic” relationships between them, as many paths for exploring the chambers and their contents. It is therefore the users, by creating their lexicons and using them to index their data, communicate and present themselves, who shape and grow the rhizome…

Depending on whether circuits are more or less used, on the quantity of data or on the strength of interactions, the rhizome undergoes – in addition to its topological transformations – various types of quantitative or metric transformations. 

* The point to remember is that IEML is a language with calculable semantics because it is also an algebra (in the broad sense) and a complex topological space. 

* In the long term, IEML will be able to serve as a semantic coordinate system for the information world at large.

2 A research program in data science

The person in charge of the data science research sub-program is the software engineer (Eng. ENSIMAG, France) Louis van Beurden, who holds also a master’s degree in data science and machine translation from the University of Montréal, Canada. Louis is planning to complete a PhD in computer science in order to test the hypothesis that, from a data science perspective, a semantic metadata system in IEML is more efficient than a semantic metadata system in natural language and phonetic writing. This doctoral research will make it possible to implement phases A and B of the program below and to carry out our first experiment.

Background information

The basic cycle in data science can be schematized according to the following loop:

  • 1. selection of raw data,
  • 2. pre-processing, i.e. cleaning data and metadata imposition (cataloguing and categorization) to facilitate the exploitation of the results by human users,
  • 3. statistical processing,
  • 4. visual and interactive presentation of results,
  • 5. exploitation of the results by human users (interpretation, storytelling) and feedback on steps 1, 2, 3

Biases or poor quality of results may have several causes, but often come from poor pre-treatment. According to the old computer adage “garbage in, garbage out“, it is the professional responsibility of the data-scientists to ensure the quality of the input data and therefore not to neglect the pre-processing phase where this data is organized using metadata.

Two types of metadata can be distinguished: 1) semantic metadata, which describes the content of documents or datasets, and 2) ordinary metadata, which describes authors, creation dates, file types, etc. Let us call “semantic pre-processing” the imposition of semantic metadata on data.

Hypothesis

Since IEML is a univocal language and the semantic relationships between morphemes, words, sentences, etc. are mathematically computable, we assume that a semantic metadata system in IEML is more efficient than a semantic metadata system in natural language and phonetic writing. Of course, the efficiency in question is related to a particular task: search, data analysis, knowledge extraction from data, machine learning, etc.

In other words, compared to a “tokenization” of semantic metadata in phonetic writing noting a natural language, a “tokenization” of semantic metadata in IEML would ensure better processing, better presentation of results to the user and better exploitation of results. In addition, semantic metadata in IEML would allow datasets that use different languages, classification systems or ontologies to be de-compartmentalized, merged and compared.

Design of the first experience

The ideal way to do an experiment is to consider a multi-variable system and transform only one of the system variables, all other things being equal. In our case, it is only the semantic metadata system that must vary. This will make it easy to compare the system’s performance with one (phonetic tokens) or the other (semantic tokens) of the semantic metadata systems.

  • – The dataset of our first experience encompasses all the articles of the Sens Public scientific journal.
  • – Our ordinary metadata are the author, publication date, etc.
  • – Our semantic metadata describe the content of articles.
  •     – In phonetic tokens, using RAMEAU categories, keywords and summaries,
  •     – In IEML tokens by translating phonetic tokens.
  • – Our processes are “big data” algorithms traditionally used in natural language processing 
  •     – An algorithm for calculating the co-occurrences of keywords.
  •     – A TF-IDF (Term Frequency / Inverse Document Frequency) algorithm that works from a word / document matrix.
  •     – A clustering algorithm based on “word embeddings” of keywords in articles (documents are represented by vectors, in a space with as many dimensions as words).
  • – A user interface will offer a certain way to access the database. This interface will be obviously adapted to the user’s task (which remains to be chosen, but could be of the “data analytics” type).
  • Result 1 corresponds to the execution of the “machine task”, i.e. the establishment of a connection network on the articles (relationships, proximities, groupings, etc.). We’ll have to compare….
  •     – result 1.1 based on the use of phonetic tokens with 
  •     – result 1.2 based on the use of IEML tokens.
  • Result 2 corresponds to the execution of the selected user-task (data analytics, navigation, search, etc.). We’ll have to compare….
  •     – result 2.1, based on the use of phonetic tokens, with 
  •     – result 2.2, based on the use of IEML tokens.

Step A: First indexing of a database in IEML

Reminder: the data are the articles of the scientific journal, the semantic metadata are the categories, keywords and summaries of the articles. From the categories, keywords and article summaries, a glossary of the knowledge area covered by the journal is created, or a sub-domain if it turns out that the task is too difficult. It should be noted that in 2019 we do not yet have the software tools to create IEML sentences and super-phrases that allow us to express facts, proposals, theories, narratives, hypotheses, etc. Phrases and super-phrases, perhaps accessible in a year or two, will therefore have to wait for a later phase of the research.

The creation of the glossary will be the work of a project community, linked to the editors of Sens-Public magazine and the Canada Research Chair in Digital Writing (led by Prof. Marcello Vitali-Rosati) at the Université de Montréal (Digital Humanities). Pierre Lévy will accompany this community and help it to identify the constants and variables of its lexicon. One of the auxiliary goals of the research is to verify whether motivated communities can appropriate IEML to categorize their data. Once we are satisfied with the IEML indexing of the article database, we will proceed to the next step.

Step B: First experimental test

  • 1. The test is determined to measure the difference between results based on phonetic tokens and results based on IEML tokens. 
  • 2. All data processing operations are carried out on the data.
  • 3. The results (machine tasks and user tasks) are compared with both types of tokens.

The experiment can eventually be repeated iteratively with minor modifications until satisfactory results are achieved.

If the hypothesis is confirmed, we proceed to the next step

Step C: Towards an automation of semantic pre-processing in IEML.

If the superior efficiency of IEML tokens for semantic metadata is demonstrated, then there will be a strong interest in maximizing the automation of IEML semantic pre-processing

The algorithms used in our experiment are themselves powerful tools for data pre-processing, they can be used, according to methods to be developed, to partially automate semantic indexing in IEML. The “word embeddings” will make it possible to study how IEML words are correlated with the natural language lexical statistics of the articles and to detect anomalies. For example, we will check if similar USLs (a USL is an IEML text) point to very different texts or if very different texts have similar USLs. 

Finally, methods will be developed to use deep learning algorithms to automatically index datasets in IEML.

Step D: Research and development perspective in Semantic Machine Learning

If step C provides the expected results, i.e. methods using AI to automate the indexing of data in IEML, then big data indexed in IEML will be available.  As progress will be made, semantic metadata may become increasingly similar to textual data (summary of sections, paragraphs, sentences, etc.) until translation into IEML is achieved, which remains a distant objective.

The data indexed in IEML could then be used to train artificial intelligence algorithms. The hypothesis that machines learn more easily when data is categorized in IEML could easily be validated by experiments of the same type as described above, by comparing the results obtained from training data indexed in IEML and the results obtained from the same data indexed in natural languages.

This last step paves the way for a better integration of statistical AI and symbolic AI (based on facts and rules, which can be expressed in IEML).

3 A research program in linguistics, humanities and social sciences

Introduction

The semiotic and linguistic development program has two interdependent components:

1. The development of the IEML metalanguage

2. The development of translation systems and bridges between IEML and other sign systems, in particular… 

  •     – natural languages,
  •     – logical formalisms,
  •     – pragmatic “language games” and games in general,
  •     – iconic languages,
  •     – artistic languages, etc.

This research and development agenda, particularly in its linguistic dimension, is important for the digital humanities. Indeed, IEML can serve as a system of semantic coordinates of the cultural universe, thus allowing the humanities to cross a threshold of scientific maturity that would bring their epistemological status closer to that of the natural sciences. Using IEML to index data and to formulate assumptions would result in….

  • (1) a de-silo of databases used by researchers in the social sciences and humanities, which would allow for the sharing and comparison of categorization systems and interpretive assumptions;
  • (2) an improved analysis of data.
  • (3) The ultimate perspective, set out in the article “The Role of the Digital Humanities in the New Political Space” (http://sens-public.org/article1369.html in French), is to aim for a reflective collective intelligence of the social sciences and humanities research community. 

But IEML’s research program in the perspective of the digital humanities – as well as its research program in data science – requires a living and dynamic semiotic and linguistic development program, some aspects of which I will outline here.

IEML and the Meaning-Text Theory

IEML’s linguistic research program is very much based on the Meaning-Text theory developed by Igor Melchuk and his school. “The main principle of this theory is to develop formal and descriptive representations of natural languages that can serve as a reliable and convenient basis for the construction of Meaning-Text models, descriptions that can be adapted to all languages, and therefore universal. ”(Excerpt translated from the Wikipedia article on Igor Melchuk). Dictionaries developed by linguists in this field connect words according to universal “lexical functions” identified through the analysis of many languages. These lexical functions have been formally transposed into the very structure of IEML (See the IEML Glossary Creation Guide) so that the IEML dictionary can be organized by the same tools (e.g. Spiderlex) as those of the Meaning-Text Theory research network. Conversely, IEML could be used as a pivot language – or concept description language – *between* the natural language dictionaries developed by the network of researchers skilled in Meaning-Text theory.

Construction of specialized lexicons in the humanities and social sciences

A significant part of the IEML lexicon will be produced by communities having decided to use IEML to mark out their particular areas of knowledge, competence or interaction. Our research in specialized lexicon construction aims to develop the best methods to help expert communities produce IEML lexicons. One of the approaches consists in identifying the “conceptual skeleton” of a domain, namely its main constants in terms of character paradigms and word paradigms. 

The first experimentation of this type of collaborative construction of specialized lexicons by experts will be conducted by Pierre Lévy in collaboration with the editorial team of the Sens Public scientific journal and the Canada Research Chair in Digital Textualities at the University of Montréal (led by Prof. Marcello Vitali-Rosati). Based on a determination of their economic and social importance, other specialized glossaries can be constructed, for example on the theme of professional skills, e-learning resources, public health prevention, etc.

Ultimately, the “digital humanities” branch of IEML will need to collaboratively develop a conceptual lexicon of the humanities to be used for the indexation of books and articles, but also chapters, sections and comments in documents. The same glossary should also facilitate data navigation and analysis. There is a whole program of development in digital library science here. I would particularly like to focus on the human sciences because the natural sciences have already developed a formal vocabulary that is already consensual.

Construction of logical, pragmatic and narrative character-tools

When we’ll have a sentence and super-phrase editor, it is planned to establish a correspondence between IEML – on the one hand – and propositional calculus and first order logics – on the other hand –. This will be done by specifying special character-tools to implement logical functions. Particular attention will be paid to formalizing the definition of rules and the declaration that “facts” are true in IEML. It should be noted in passing that, in IEML, grammatical expressions represent classes, sets or categories, but that logical individuals (proper names, numbers, etc.) or instances of classes are represented by “literals” expressed in ordinary characters (phonetic alphabets, Chinese characters, Arabic numbers, URLs, etc.).

In anticipation of practical use in communication, games, commerce, law (smart contracts), chatbots, robots, the Internet of Things, etc., we will develop a range of character-tools with illocutionary force such as “I offer”, “I buy”, “I quote”, “I give an instruction”, etc.

Finally, we will making it easier for authors of super-sentences by developing a range of character-tools implementing “narrative functions”.

4 A software development program

A software environment for the development and public use of the IEML language

Logically, the first multi-user IEML application will be dedicated to the development of the language itself. This application is composed of the following three web modules.

  • 1. A morpheme editor that also allows you to navigate in the morphemes database, or “dictionary”.
  • 2. A character and word editor that also allows navigation in the “lexicon”.
  • 3. A navigation and reading tool in the IEML library as a whole, or “IEML database” that brings together the dictionary and lexicon, with translations, synonyms and comments in French and English for the moment.

The IEML database is a “Git” database and is currently hosted by GitHub. Indeed, a Git database makes it possible to record successive versions of the language, as well as to monitor and model its growth. It also allows large-scale collaboration among teams capable of developing specific branches of the lexicon independently and then integrating them into the main branch after discussion, as is done in the collaborative development of large software projects. As soon as a sub-lexicon is integrated into the main branch of the Git database, it becomes a “common” usable by everyone (according to the latest General Public License version.

Morpheme and word editors are actually “Git clients” that feed the IEML database. A first version of this collaborative read-write environment should be available in the fall of 2019 and then tested by real users: the editors of the Scientific Journal “Sens Public” as well as other participants in the University of Montréal’s IEML seminar.

The following versions of the IEML read/write environment should allow the editing of sentences and texts as well as literals that are logical individuals not translated into IEML, such as proper names, numbers, URLs, etc.

A social medium for collaborative knowledge management

A large number of applications using IEML can be considered, both commercial and non-commercial. Among all these applications, one of them seems to be particularly aligned with the public interest: a social medium dedicated to collaborative knowledge and skills management. This new “place of knowledge” could allow the online convergence of the missions of… 

  • – museums and libraries, 
  • – schools and universities, 
  • – companies and administrations (with regard to their knowledge creation and management dimension), 
  • – smart cities, employment agencies, civil society networks, NGO, associations, etc.

According to its general philosophy, such a social medium should…

  • – be supported by an intrinsically distributed platform, 
  • – have the simplicity – or the economy of means – of Twitter,
  • – ensure the sovereignty of users over their data,
  • – promote collaborative processes.

The main functions performed by this social medium would be:

  • – data curation (reference and categorization of web pages, edition of resource collections), 
  • – teaching offers and learning demands,
  • – offers and demands for skills, or employment market.

IEML would serve as a common language for

  • – data categorization, 
  • – description of the knowledge and skills, 
  • – the expression of acts within the social medium (supply, demand, consent, publish, etc.)
  • – addressing users through their knowledge and skills.

Three levels of meaning would thus be formalized in this medium.

  • (1) The linguistic level in IEML  – including lexical and narrative functions – formalizes what is spoken about (lexicon) and what is said (sentences and super-phrases).
  • – (2) The logical – or referential – level adds to the linguistic level… 
  •     – logical functions (first order logic and propositional logic) expressed in IEML using logical character-tools,
  •     – the ability of pointing to references (literals, document URLs, datasets, etc.),
  •     – the means to express facts and rules in IEML and thus to feed inference engines.
  • – (3) The pragmatic level adds illocutionary functions and users to the linguistic and logical levels.
  •     – Illocutionary functions (thanks to pragmatic character-tools) allow the expression of conventional acts and rules (such as “game” rules). 
  •     – The pragmatic level obviously requires the consideration of players or users, as well as user groups.
  •     – It should be noted that there is no formal difference between logical inference and pragmatic inference but only a difference in use, one aiming at the truth of propositions according to referred states of things, the other calculating the rights, obligations, gains, etc. of users according to their actions and the rules of the games they play.

The semantic profiles of users and datasets will be arranged according to the three levels that have just been explained. The “place of knowledge” could be enhanced by the use of tokens or crypto-currencies to reward participation in collective intelligence. If successful, this type of medium could be generalized to other areas such as health, democratic governance, trade, etc.

Ramon Lull

Le Livre Blanc d’IEML, le métalangage de l’économie de l’information. 2019.
RESUMÉ. IEML est une langue à la sémantique calculable inventée par Pierre Lévy. Le “Livre blanc” (version Beta et non finie) explique les grands principes, la grammaire et les premières applications d’IEML. (une centaine de pages)

Etre et Mémoire dans la revue Sens Public 2019
RÉSUMÉ Le premier enjeu de cet article est de replacer l’objet des sciences humaines (la culture et la signification symbolique) dans la continuité des objets des sciences de la nature. Je fais l’hypothèse que le sens n’apparaît pas brusquement avec l’humanité mais que différentes couches de codage et de mémoire (quantique, atomique, génétique, nerveuse et symbolique) s’empilent et se complexifient progressivement, la strate symbolique n’étant que la dernière en date des « machines d’écriture ». Le second enjeu du texte est de définir la spécificité et l’unité de la couche symbolique, et donc le champ des sciences humaines. Par opposition à une certaine tradition logocentrique, je montre que le symbolisme – s’il comprend évidemment le langage – englobe aussi des sémiotiques (comme la cuisine ou la musique) où la coupure signifiant/signifié n’est pas aussi pertinente que pour les langues. Le troisième enjeu de cet essai est de montrer que les formes culturelles et les puissances interprétatives de l’humanité évoluent avec ses machines d’écriture. L’émergence du numérique, en particulier, laisse entrevoir un raffinement des sciences humaines allant jusqu’au calcul de la complexité sémantique. Cet essai de redéfinition des sciences humaines dans la continuité des sciences de la nature suppose une ontologie – ou une méta-ontologie, selon l’expression de Marcello Vitali-Rosati – pour qui les notions d’écriture et de mémoire sont centrales et qui, en rupture avec la critique kantienne, accepte la pleine réalité de la spatialité et de la temporalité naturelle.

Le rôle des humanités numériques dans le nouvel espace politique dans la revue Sens Public, 2019
RESUMÉ. Alors que plus de 50% de la population mondiale est connectée à l’Internet, les grandes plateformes, et particulièrement Facebook, ont acquis un énorme pouvoir politique. Cette nouvelle situation nous oblige a repenser le projet d’émancipation des lumières. Je propose dans cet article que les chercheurs en sciences humaines et sociales relèvent ce défi en adoptant et en diffusant de nouvelles normes d’intelligence collective réflexive. Les communs de la connaissance, la science ouverte et la souveraineté des individus sur les données qu’ils produisent font l’unanimité. Mais ces principes incontournables sont encore insuffisants. La puissance de calcul et de communication disponible, combinée à l’utilisation d’IEML (une langue à la sémantique calculable), nous permettent d’envisager une mise en transparence des opérations de création de connaissance, de sens et d’autorité. Je présente ici les grandes orientations stratégiques permettant d’atteindre ces objectifs. Une révolution épistémologique des sciences humaines est à portée de main, et avec elle une nouvelle étape dans l’évolution de la pensée critique. (une cinquantaine de pages)

La Pyramide algorithmique dans la revue Sens Public 2017
RESUMÉ. Le medium algorithmique est une infrastructure de communication qui augmente les pouvoirs des médias antérieurs en y ajoutant la mécanisation des opérations symboliques. Son émergence au milieu du vingtième siècle résulte d’une longue histoire scientifique et technique que je résume au début de l’article. Je rappelle ensuite les grandes étapes de son développement (ordinateurs centraux, internet et PC, Web social, Cloud augmenté par l’intelligence artificielle et la chaîne de blocs) ainsi que leurs conséquences sociocognitives. J’évoque pour finir les développements futurs de ce médium dans la perspective d’une intelligence collective réflexive basée sur une nouvelle forme de calcul sémantique.

Les opérateurs élémentaires de la réflexionCahiers Sens public, 2018/1 (n° 21-22), p. 75-102. La philosophie qui a inspiré les “primitives” d’IEML.
RÉSUMÉ. Cet article tente de réduire au minimum les concepts fondamentaux nécessaires à la réflexion sur le sens. Deux concepts complémentaires, la virtualité et l’actualité, rendent compte des dualités de l’action et de la grande opposition métaphysique entre transcendance et immanence. L’actuel possède une adresse spatio-temporelle, il est situé dans le temps séquentiel et dans l’espace physique tridimensionnel tandis qu’on ne peut assigner d’adresse spatio-temporelle précise à l’abstraction du virtuel. Le triangle sémiotique rend compte des triades de la représentation. Le signe (1) indique (2) une chose, un objet ou un référent quelconque auprès (3) d’un être ou interprétant. Il n’y a de signe que « de » quelque chose et « pour » quelqu’un. Enfin, il faut pouvoir considérer explicitement une absence, y compris un vide de connaissance, pour poser des questions et réfléchir. Les six opérateurs élémentaires de la réflexion (virtuel, actuel, signe, être, chose et vide) fonctionnent de manière interdépendante et traversent tous les champs des sciences humaines et sociale : on étudie particulièrement dans cet article leur pertinence en sémiotique, épistémologie, cosmologie, religion, politique et économie.

I put forward in this paper a vision for a new generation of cloud-based public communication service designed to foster reflexive collective intelligence. I begin with a description of the current situation, including the huge power and social shortcomings of platforms like Google, Apple, Facebook, Amazon, Microsoft, Alibaba, Baidu, etc. Contrasting with the practice of these tech giants, I reassert the values that are direly needed at the foundation of any future global public sphere: openness, transparency and commonality. But such ethical and practical guidelines are probably not powerful enough to help us crossing a new threshold in collective intelligence. Only a disruptive innovation in cognitive computing will do the trick. That’s why I introduce “deep meaning” a new research program in artificial intelligence, based on the Information Economy  MetaLanguage (IEML). I conclude this paper by evoking possible bootstrapping scenarii for the new public platform.

The rise of platforms

At the end of the 20th century, one percent of the human population was connected to the Internet. In 2017, more than half the population is connected. Most of the users interact in social media, search information, buy products and services online. But despite the ongoing success of digital communication, there is a growing dissatisfaction about the big tech companies – the “Silicon Valley” – who dominate the new communication environment.

The big techs are the most valued companies in the world and the massive amount of data that they possess is considered the most precious good of our time. Silicon Valley owns the big computers: the network of physical centers where our personal and business data are stored and processed. Their income comes from their economic exploitation of our data for marketing purposes and from their sales of hardware, software or services. But they also derive considerable power from the knowledge of markets and public opinions that stems from their information control.

The big cloud companies master new computing techniques mimicking neurons when they learn a new behavior. These programs are marketed as deep learning or artificial intelligence even if they have no cognitive autonomy and need some intense training on huge masses of data. Despite their well known limitations, machine learning algorithms have effectively augmented the abilities of digital systems. Deep learning is now used in every economic sector. Chips specialized in deep learning are found in big data centers, smartphones, robots and autonomous vehicles. As Vladimir Putin rightly told young Russians in his speech for the first day of school in fall 2017: “Whoever becomes the leader in this sphere [of artificial intelligence] will become the ruler of the world”.

The tech giants control huge business ecosystems beyond their official legal borders and they can ruin or buy competitors. Unfortunately, the big tech rivalry prevents a real interoperability between cloud services, even if such interoperability would be in the interest of the general public and of many smaller businesses. As if their technical and economic powers were not enough, the big tech are now playing into the courts of governments. Facebook warrants our identity and warns our family and friends that we are safe when a terrorist attack or a natural disaster occurs. Mark Zuckerberg states that one of Facebook’s mission is to insure that the electoral process is fair and open in democratic countries. Google Earth and Google Street View are now used by several municipal instances and governments as their primary source of information for cadastral plans and other geographical or geospatial services. Twitter became an official global political, diplomatic and news service. Microsoft sells its digital infrastructure to public schools. The kingdom of Denmark opened an official embassy in Silicon Valley. Cryptocurrencies independent from nation states (like Bitcoin) are becoming increasingly popular. Blockchain-based smart contracts (powered by Ethereum) bypass state authentication and traditional paper bureaucracies. Some traditional functions of government are taken over by private technological ventures.

This should not come as a surprise. The practice of writing in ancient palace-temples gave birth to government as a separate entity. Alphabet and paper allowed the emergence of merchant city-states and the expansion of literate empires. The printing press, industrial economy, motorized transportation and electronic media sustained nation-states. The digital revolution will foster new forms of government. Today, we discuss political problems in a global public space taking advantage of the web and social media and the majority of humans live in interconnected cities and metropoles. Each urban node wants to be an accelerator of collective intelligence, a smart city. We need to think about public services in a new way. Schools, universities, public health institutions, mail services, archives, public libraries and museums should take full advantage of the internet and de-silo their datasets. But we should go further. Are current platforms doing their best to enhance collective intelligence and human development? How about giving back to the general population the data produced in social media and other cloud services, instead of just monetizing it for marketing purposes ? How about giving to the people access to cognitive powers unleashed by an ubiquitous algorithmic medium?

Information wants to be open, transparent and common

We need a new kind of public sphere: a platform in the cloud where data and metadata would be our common good, dedicated to the recording and collaborative exploitation of memory in the service of our collective intelligence. The core values orienting the construction of this new public sphere should be: openness, transparency and commonality

Firstly openness has already been experimented in the scientific community, the free software movement, the creative commons licensing, Wikipedia and many more endeavors. It has been adopted by several big industries and governments. “Open by default” will soon be the new normal. Openness is on the rise because it maximizes the improvement of goods and services, fosters trust and supports collaborative engagement. It can be applied to data formats, operating systems, abstract models, algorithms and even hardware. Openness applies also to taxonomies, ontologies, search architectures, etc. A new open public space should encourage all participants to create, comment, categorize, assess and analyze its content.

Then, transparency is the very ground for trust and the precondition of an authentic dialogue. Data and people (including the administrators of a platform), should be traceable and audit-able. Transparency should be reciprocal, without distinction between the rulers and the ruled. Such transparency will ultimately be the basis for reflexive collective intelligence, allowing teams and communities of any size to observe and compare their cognitive activity

Commonality means that people will not have to pay to get access to this new public sphere: all will be free and public property. Commonality means also transversality: de-silo and cross-pollination. Smart communities will interconnect and recombine all kind of useful information: open archives of libraries and museums, free academic publications, shared learning resources, knowledge management repositories, open-source intelligence datasets, news, public legal databases…

From deep learning to deep meaning

This new public platform will be based on the web and its open standards like http, URL, html, etc. Like all current platforms, it will take advantage of distributed computing in the cloud and it will use “deep learning”: an artificial intelligence technology that employs specialized chips and algorithms that roughly mimic the learning process of neurons. Finally, to be completely up to date, the next public platform will enable blockchain-based payments, transactions, contracts and secure records

If a public platform offers the same technologies as the big tech (cloud, deep learning, blockchain), with the sole difference of openness, transparency and commonality, it may prove insufficient to foster a swift adoption, as is demonstrated by the relative failures of Diaspora (open Facebook) and Mastodon (open Twitter). Such a project may only succeed if it comes up with some technical advantage compared to the existing commercial platforms. Moreover, this technical advantage should have appealing political and philosophical dimensions.

No one really fancies the dream of autonomous machines, specially considering the current limitations of artificial intelligence. Instead, we want an artificial intelligence designed for the augmentation of human personal and collective intellect.

Language as a platform

In order to augment the human intellect, we need both statistical and symbolic AI! Right now deep learning is based on neural networks simulation. It is enough to model roughly animal cognition (every animal species has neurons) but it is not refined enough to model human cognition. The difference between animal cognition and human cognition is the reflexive thinking that comes from language and explicit modelling. Why not adding a layer of semantic addressing on top of neural connectivity. In human cognition, the categories that organize perception, action, memory and learning are expressed linguistically so they may be reflected upon and shared in conversations. A language works like the semantic addressing system of a social virtual database.

But there is a problem with natural languages (english, french, arabic, etc.), they are irregular and do not lend themselves easily to machine understanding, I mean real understanding (projection of data on semantic networks) and not stochastic parroting. The current trend in natural language processing, an important field of artificial intelligence, is to use statistical algorithms and deep learning methods to understand and produce linguistic data. But instead of using only statistics, “deep meaning” adopts in addition a regular and computable metalanguage. I have designed IEML (Information Economy MetaLanguage) from the beginning to optimize semantic computing. IEML words are built from six primitive symbols and two operations: addition and multiplication. The semantic relations between IEML words follow the lines of their generative operations. The total number of words do not exceed 3 000. From its dictionary, the generative grammar of IEML allows the construction of recursive sentences that can define complex concepts and their relations. IEML would be the semantic addressing system of a social database.

Given large datasets, deep meaning allows the automatic computing of semantic relations between data, semantic analysis and semantic visualizations. This new technology fosters semantic interoperability: it decompartmentalizes tags, folksonomies, taxonomies, ontologies and languages. When on line communities categorize, assess and exchange semantic data, they generate explorable ecosystems of ideas that represent their collective intelligence. Take note that the vision of collective intelligence proposed here is distinct from the “wisdom of the crowd” model, that assumes independent agents and excludes dialogue and reflexivity. Just the opposite : deep meaning was designed from the beginning to nurture dialogue and reflexivity.

The main functions of the new public sphere

deepmeaning

In the new public sphere, every netizen will act as an author, editor, artist, curator, critique, messenger, contractor and gamer. The next platform weaves five functions together: curation, creation, communication, transaction and immersion.

By curation I mean the collaborative creation, edition, analysis, synthesis, visualization, explanation and publication of datasets. People posting, liking and commenting content on social media are already doing data curation, in a primitive, simple way. Active professionals in the fields of heritage preservation (library, museums), digital humanities, education, knowledge management, data-driven journalism or open-source intelligence practice data curation in a more systematic and mindful manner. The new platform will offer a consistent service of collaborative data curation empowered by a common semantic addressing system.

Augmented by deep meaning technology, our public sphere will include a semantic metadata editor applicable to any document format. It will work as a registration system for the works of the mind. Communication will be ensured by a global Twitter-like public posting system. But instead of the current hashtags that are mere sequences of characters, the new semantic tags will self-translate in all natural languages and interconnect by conceptual proximity. The blockchain layer will allow any transaction to be recorded. The platform will remunerate authors and curators in collective intelligence coins, according to the public engagement generated by their work. The new public sphere will be grounded in the internet of things, smart cities, ambient intelligence and augmented reality. People will control their environment and communicate with sensors, software agents and bots of all kinds in the same immersive semantic space. Virtual worlds will simulate the collective intelligence of teams, networks and cities.

Bootstrapping

How to bridge the gap from the fundamental research to the full scale industrial platform? Such endeavor will be much less expensive than the conquest of space and could bring a tremendous augmentation of human collective intelligence. Even if the network effect applies obviously to the new public space, small communities of pioneers will benefit immediately from its early release. On the humanistic side, I have already mentioned museums and libraries, researchers in humanities and social science, collaborative learning networks, data-oriented journalists, knowledge management and business intelligence professionals, etc. On the engineering side, deep meaning opens a new sub-field of artificial intelligence that will enhance current techniques of big data analytics, machine learning, natural language processing, internet of things, augmented reality and other immersive interfaces. Because it is open source by design, the development of the new technology can be crowdsourced and shared easily among many different actors.

Let’s draw a distinction between the new public sphere, including its semantic coordinate system, and the commercial platforms that will give access to it. This distinction being made, we can imagine a consortium of big tech companies, universities and governments supporting the development of the global public service of the future. We may also imagine one of the big techs taking the lead to associate its name to the new platform and developing some hardware specialized in deep meaning. Another scenario is the foundation of a company that will ensure the construction and maintenance of the new platform as a free public service while sustaining itself by offering semantic services: research, consulting, design and training. In any case, a new international school must be established around a virtual dockyard where trainees and trainers build and improve progressively the semantic coordinate system and other basic models of the new platform. Students from various organizations and backgrounds will gain experience in the field of deep meaning and will disseminate the acquired knowledge back into their communities.

Emission de radio (Suisse romande), 25 minutes en français.

Sémantique numérique et réseaux sociaux. Vers un service public planétaire, 1h en français

You-Tube Video (in english) 1h

What is IEML?

  • IEML (Information Economy MetaLanguage) is an open (GPL3) and free artificial metalanguage that is simultaneously a programming language, a pivot between natural languages and a semantic coordinate system. When data are categorized in IEML, the metalanguage compute their semantic relationships and distances.
  • From a “social” point of view, on line communities categorizing data in IEML generate explorable ecosystems of ideas that represent their collective intelligence.
  • Github.

What problems does IEML solve?

  • Decompartmentalization of tags, folksonomies, taxonomies, ontologies and languages (french and english for now).
  • Semantic search, automatic computing and visualization of semantic relations and distances between data.
  • Giving back to the users the information that they produce, enabling reflexive collective intelligence.

Who is IEML for?

Content curators

  • knowledge management
  • marketing
  • curation of open data from museums and libraries, crowdsourced curation
  • education, collaborative learning, connectionists MOOCs
  • watch, intelligence

Self-organizing on line communities

  • smart cities
  • collaborative teams
  • communities of practice…

Researchers

  • artificial intelligence
  • data analytics
  • humanities and social sciences, digital humanities

What motivates people to adopt IEML?

  • IEML users participate in the leading edge of digital innovation, big data analytics and collective intelligence.
  • IEML can enhance other AI techniques like machine learning, deep learning, natural language processing and rule-based inference.

IEML tools

IEML v.0

IEML v.0 includes…

  • A dictionary of  concepts whose edition is restricted to specialists but navigation and use is open to all.
  • A library of tags – called USLs (Uniform Semantic Locators) – whose edition, navigation and use is open to all.
  • An API allowing access to the dictionary, the library and their functionalities (semantic computing).

Intlekt v.0

Intlekt v.0 is a collaborative data curation tool that allows
– the categorization of data in IEML,
– the semantic visualization of collections of data categorized in IEML
– the publication of these collections

The prototype (to be issued in May 2018) will be mono-user but the full blown app will be social.

Who made it?

The IEML project is designed and led by Pierre Lévy.

It has been financed by the Canada Research Chair in Collective Intelligence at the University of Ottawa (2002-2016).

At an early stage (2004-2011) Steve Newcomb and Michel Biezunski have contributed to the design and implementation (parser, dictionary). Christian Desjardins implemented a second version of the dictionary. Andrew Roczniak helped for the first mathematical formalization, implemented a second version of the parser and a third version of the dictionary (2004-2016).

The 2016 version has been implemented by Louis van Beurden, Hadrien Titeux (chief engineers), Candide Kemmler (project management, interface), Zakaria Soliman and Alice Ribaucourt.

The 2017 version (1.0) has been implemented by Louis van Beurden (chief engineer), Eric Waldman (IEML edition interface, visualization), Sylvain Aube (Drupal), Ludovic Carré and Vincent Lefoulon (collections and tags management).

dice-1-600x903

Dice sculpture by Tony Cragg