Pierre Lévy:

Pierre Levy-photo 1

Originally published by the CCCTLab as an interview with Sandra Alvaro.

Pierre Lévy is a philosopher and a pioneer in the study of the impact of the Internet on human knowledge and culture. In Collective Intelligence. Mankind’s Emerging World in Cyberspace, published in French in 1994 (English translation in 1999), he describes a kind of collective intelligence that extends everywhere and is constantly evaluated and coordinated in real time, a collective human intelligence, augmented by new information technologies and the Internet. Since then, he has been working on a major undertaking: the creation of IEML (Information Economy Meta Language), a tool for the augmentation of collective intelligence by means of the algorithmic medium. IEML, which already has its own grammar, is a metalanguage that includes the semantic dimension, making it computable. This in turn allows a reflexive representation of collective intelligence processes.

In the book Semantic Sphere I. Computation, Cognition, and Information Economy, Pierre Lévy describes IEML as a new tool that works with the ocean of data of participatory digital memory, which is common to all humanity, and systematically turns it into knowledge. A system for encoding meaning that adds transparency, interoperability and computability to the operations that take place in digital memory.

By formalising meaning, this metalanguage adds a human dimension to the analysis and exploitation of the data deluge that is the backdrop of our lives in the digital society. And it also offers a new standard for the human sciences with the potential to accommodate maximum diversity and interoperability.

In “The Technologies of Intelligence” and “Collective Intelligence”, you argue that the Internet and related media are new intelligence technologies that augment the intellectual processes of human beings. And that they create a new space of collaboratively produced, dynamic, quantitative knowledge. What are the characteristics of this augmented collective intelligence?

The first thing to understand is that collective intelligence already exists. It is not something that has to be built. Collective intelligence exists at the level of animal societies: it exists in all animal societies, especially insect societies and mammal societies, and of course the human species is a marvellous example of collective intelligence. In addition to the means of communication used by animals, human beings also use language, technology, complex social institutions and so on, which, taken together, create culture. Bees have collective intelligence but without this cultural dimension. In addition, human beings have personal reflexive intelligence that augments the capacity of global collective intelligence. This is not true for animals but only for humans.

Now the point is to augment human collective intelligence. The main way to achieve this is by means of media and symbolic systems. Human collective intelligence is based on language and technology and we can act on these in order to augment it. The first leap forward in the augmentation of human collective intelligence was the invention of writing. Then we invented more complex, subtle and efficient media like paper, the alphabet and positional systems to represent numbers using ten numerals including zero. All of these things led to a considerable increase in collective intelligence. Then there was the invention of the printing press and electronic media. Now we are in a new stage of the augmentation of human collective intelligence: the digital or – as I call it – algorithmic stage. Our new technical structure has given us ubiquitous communication, interconnection of information, and – most importantly – automata that are able to transform symbols. With these three elements we have an extraordinary opportunity to augment human collective intelligence.

You have suggested that there are three stages in the progress of the algorithmic medium prior to the semantic sphere: the addressing of information in the memory of computers (operating systems), the addressing of computers on the Internet, and finally the Web – the addressing of all data within a global network, where all information can be considered to be part of an interconnected whole–. This externalisation of the collective human memory and intellectual processes has increased individual autonomy and the self-organisation of human communities. How has this led to a global, hypermediated public sphere and to the democratisation of knowledge?

This democratisation of knowledge is already happening. If you have ubiquitous communication, it means that you have access to any kind of information almost for free: the best example is Wikipedia. We can also speak about blogs, social media, and the growing open data movement. When you have access to all this information, when you can participate in social networks that support collaborative learning, and when you have algorithms at your fingertips that can help you to do a lot of things, there is a genuine augmentation of collective human intelligence, an augmentation that implies the democratisation of knowledge.

What role do cultural institutions play in this democratisation of knowledge?

Cultural Institutions are publishing data in an open way; they are participating in broad conversations on social media, taking advantage of the possibilities of crowdsourcing, and so on. They also have the opportunity to grow an open, bottom-up knowledge management strategy.

dialect_human_development

A Model of Collective Intelligence in the Service of Human Development (Pierre Lévy, en The Semantic Sphere, 2011) S = sign, B = being, T = thing.

We are now in the midst of what the media have branded the ‘big data’ phenomenon. Our species is producing and storing data in volumes that surpass our powers of perception and analysis. How is this phenomenon connected to the algorithmic medium?

First let’s say that what is happening now, the availability of big flows of data, is just an actualisation of the Internet’s potential. It was always there. It is just that we now have more data and more people are able to get this data and analyse it. There has been a huge increase in the amount of information generated in the period from the second half of the twentieth century to the beginning of the twenty-first century. At the beginning only a few people used the Internet and now almost the half of human population is connected.

At first the Internet was a way to send and receive messages. We were happy because we could send messages to the whole planet and receive messages from the entire planet. But the biggest potential of the algorithmic medium is not the transmission of information: it is the automatic transformation of data (through software).

We could say that the big data available on the Internet is currently analysed, transformed and exploited by big governments, big scientific laboratories and big corporations. That’s what we call big data today. In the future there will be a democratisation of the processing of big data. It will be a new revolution. If you think about the situation of computers in the early days, only big companies, big governments and big laboratories had access to computing power. But nowadays we have the revolution of social computing and decentralized communication by means of the Internet. I look forward to the same kind of revolution regarding the processing and analysis of big data.

Communications giants like Google and Facebook are promoting the use of artificial intelligence to exploit and analyse data. This means that logic and computing tend to prevail in the way we understand reality. IEML, however, incorporates the semantic dimension. How will this new model be able to describe they way we create and transform meaning, and make it computable?

Today we have something called the “semantic web”, but it is not semantic at all! It is based on logical links between data and on algebraic models of logic. There is no model of semantics there. So in fact there is currently no model that sets out to automate the creation of semantic links in a general and universal way. IEML will enable the simulation of ecosystems of ideas based on people’s activities, and it will reflect collective intelligence. This will completely change the meaning of “big data” because we will be able to transform this data into knowledge.

We have very powerful tools at our disposal, we have enormous, almost unlimited computing power, and we have a medium were the communication is ubiquitous. You can communicate everywhere, all the time, and all documents are interconnected. Now the question is: how will we use all these tools in a meaningful way to augment human collective intelligence?

This is why I have invented a language that automatically computes internal semantic relations. When you write a sentence in IEML it automatically creates the semantic network between the words in the sentence, and shows the semantic networks between the words in the dictionary. When you write a text in IEML, it creates the semantic relations between the different sentences that make up the text. Moreover, when you select a text, IEML automatically creates the semantic relations between this text and the other texts in a library. So you have a kind of automatic semantic hypertextualisation. The IEML code programs semantic networks and it can easily be manipulated by algorithms (it is a “regular language”). Plus, IEML self-translates automatically into natural languages, so that users will not be obliged to learn this code.

The most important thing is that if you categorize data in IEML it will automatically create a network of semantic relations between the data. You can have automatically-generated semantic relations inside any kind of data set. This is the point that connects IEML and Big Data.

So IEML provides a system of computable metadata that makes it possible to automate semantic relationships. Do you think it could become a new common language for human sciences and contribute to their renewal and future development?

Everyone will be able to categorise data however they want. Any discipline, any culture, any theory will be able to categorise data in its own way, to allow diversity, using a single metalanguage, to ensure interoperability. This will automatically generate ecosystems of ideas that will be navigable with all their semantic relations. You will be able to compare different ecosystems of ideas according to their data and the different ways of categorising them. You will be able to chose different perspectives and approaches. For example, the same people interpreting different sets of data, or different people interpreting the same set of data. IEML ensures the interoperability of all ecosystem of ideas. On one hand you have the greatest possibility of diversity, and on the other you have computability and semantic interoperability. I think that it will be a big improvement for the human sciences because today the human sciences can use statistics, but it is a purely quantitative method. They can also use automatic reasoning, but it is a purely logical method. But with IEML we can compute using semantic relations, and it is only through semantics (in conjunction with logic and statistics) that we can understand what is happening in the human realm. We will be able to analyse and manipulate meaning, and there lies the essence of the human sciences.

Let’s talk about the current stage of development of IEML: I know it’s early days, but can you outline some of the applications or tools that may be developed with this metalanguage?

Is still too early; perhaps the first application may be a kind of collective intelligence game in which people will work together to build the best ecosystem of ideas for their own goals.

I published The Semantic Sphere in 2011. And I finished the grammar that has all the mathematical and algorithmic dimensions six months ago. I am writing a second book entitled Algorithmic Intelligence, where I explain all these things about reflexivity and intelligence. The IEML dictionary will be published (online) in the coming months. It will be the first kernel, because the dictionary has to be augmented progressively, and not just by me. I hope other people will contribute.

This IEML interlinguistic dictionary ensures that semantic networks can be translated from one natural language to another. Could you explain how it works, and how it incorporates the complexity and pragmatics of natural languages?

The basis of IEML is a simple commutative algebra (a regular language) that makes it computable. A special coding of the algebra (called Script) allows for recursivity, self-referential processes and the programming of rhizomatic graphs. The algorithmic grammar transforms the code into fractally complex networks that represent the semantic structure of texts. The dictionary, made up of terms organized according to symmetric systems of relations (paradigms), gives content to the rhizomatic graphs and creates a kind of common coordinate system of ideas. Working together, the Script, the algorithmic grammar and the dictionary create a symmetric correspondence between individual algebraic operations and different semantic networks (expressed in natural languages). The semantic sphere brings together all possible texts in the language, translated into natural languages, including the semantic relations between all the texts. On the playing field of the semantic sphere, dialogue, intersubjectivity and pragmatic complexity arise, and open games allow free regulation of the categorisation and the evaluation of data. Ultimately, all kinds of ecosystems of ideas – representing collective cognitive processes – will be cultivated in an interoperable environment.

start-ieml

Schema from the START – IEML / English Dictionary by Prof. Pierre Lévy FRSC CRC University of Ottawa 25th August 2010 (Copyright Pierre Lévy 2010 (license Apache 2.0)

Since IEML automatically creates very complex graphs of semantic relations, one of the development tasks that is still pending is to transform these complex graphs into visualisations that make them usable and navigable.

How do you envisage these big graphs? Can you give us an idea of what the visualisation could look like?

The idea is to project these very complex graphs onto a 3D interactive structure. These could be spheres, for example, so you will be able to go inside the sphere corresponding to one particular idea and you will have all the other ideas of its ecosystem around you, arranged according to the different semantic relations. You will be also able to manipulate the spheres from the outside and look at them as if they were on a geographical map. And you will be able to zoom in and zoom out of fractal levels of complexity. Ecosystems of ideas will be displayed as interactive holograms in virtual reality on the Web (through tablets) and as augmented reality experienced in the 3D physical world (through Google glasses, for example).

I’m also curious about your thoughts on the social alarm generated by the Internet’s enormous capacity to retrieve data, and the potential exploitation of this data. There are social concerns about possible abuses and privacy infringement. Some big companies are starting to consider drafting codes of ethics to regulate and prevent the abuse of data. Do you think a fixed set of rules can effectively regulate the changing environment of the algorithmic medium? How can IEML contribute to improving the transparency and regulation of this medium?

IEML does not only allow transparency, it allows symmetrical transparency. Everybody participating in the semantic sphere will be transparent to others, but all the others will also be transparent to him or her. The problem with hyper-surveillance is that transparency is currently not symmetrical. What I mean is that ordinary people are transparent to big governments and big companies, but these big companies and big governments are not transparent to ordinary people. There is no symmetry. Power differences between big governments and little governments or between big companies and individuals will probably continue to exist. But we can create a new public space where this asymmetry is suspended, and where powerful players are treated exactly like ordinary players.

And to finish up, last month the CCCB Lab held began a series of workshops related to the Internet Universe project, which explore the issue of education in the digital environment. As you have published numerous works on this subject, could you summarise a few key points in regard to educating ‘digital natives’ about responsibility and participation in the algorithmic medium?

People have to accept their personal and collective responsibility. Because every time we create a link, every time we “like” something, every time we create a hashtag, every time we buy a book on Amazon, and so on, we transform the relational structure of the common memory. So we have a great deal of responsibility for what happens online. Whatever is happening is the result of what all the people are doing together; the Internet is an expression of human collective intelligence.

Therefore, we also have to develop critical thinking. Everything that you find on the Internet is the expression of particular points of view, that are neither neutral nor objective, but an expression of active subjectivities. Where does the money come from? Where do the ideas come from? What is the author’s pragmatic context? And so on. The more we know the answers to these questions, the greater the transparency of the source… and the more it can be trusted. This notion of making the source of information transparent is very close to the scientific mindset. Because scientific knowledge has to be able to answer questions such as: Where did the data come from? Where does the theory come from? Where do the grants come from? Transparency is the new objectivity.

Originally posted on Blog of Collective Intelligence 2003-2014:

pierre_levy

Pierre Lévy is a philosopher and a pioneer in the study of the impact of the Internet on human knowledge and culture. In Collective Intelligence. Mankind’s Emerging World in Cyberspace, published in French in 1994 (English translation in 1999), he describes a kind of collective intelligence that extends everywhere and is constantly evaluated and coordinated in real time, a collective human intelligence, augmented by new information technologies and the Internet. Since then, he has been working on a major undertaking: the creation of IEML (Information Economy Meta Language), a tool for the augmentation of collective intelligence by means of the algorithmic medium. IEML, which already has its own grammar, is a metalanguage that includes the semantic dimension, making it computable. This in turn allows a reflexive representation of collective intelligence processes.

In the book Semantic Sphere I. Computation, Cognition, and Information Economy, Pierre Lévy describes IEML as…

View original 2,744 more words

Rothko

Interview with Nelesi Rodriguez, published in spanish in the academic journal Comunicacion , Estudios venezolanos de comunicación • 2º trimestre 2014, n. 166

Collective intelligence in the digital age: A revolution just at its beginning

Pierre Lévy (P.L.) is a renowned theorist and media scholar. His ideas on collective intelligence have been essential for the comprehension of some phenomena of contemporary communication, and his research on Information Economy Meta Language (IEML) is today one of the biggest promises of data processing and of knowledge management. In this interview conducted by the team of the Comunicación(C.M.) magazine, he explained to us some of the basic points of his theory, and gave us an interesting reading on current topics related to communication and digital media. Nelesi Rodríguez, April 2014.

APPROACH TO THE SUBJECT MATTER

C.M: Collective intelligence can be defined as shared knowledge that exists everywhere, that is constantly measured, coordinated in real time, and that drives the effective mobilization of several skills. In this regard, it is understood that collective intelligence is not a quality exclusive to human beings. In what way is human collective intelligence different from other species’ collective intelligence?

P.L: You are totally right when you say that collective intelligence is not exclusive to human race. We know that the ants, the bees, and in general all social animals have got collective intelligence. They solve problems together, and –as social animals-, they are not able to survive alone and this is also the case with human species; we are not able to survive alone and we solve problems together.

But there is a big difference that is related to the use of language: Animals are able to communicate, but they do not have language, I mean, they cannot ask questions, they cannot tell stories, they cannot have dialogues, they cannot communicate about their emotions, their fears, and so on.

So there is the language, that is specific to the human kind, and with the language you have of course better communication and an enhanced collective intelligence; and you have also all that comes with this linguistic ability, that is the technology, the complexity of social institutions –like law, religion, ethics, economy… All these things that animals don`t have. This ability to play with symbolic systems, to play with tools and to build complex social institutions, creates a much more powerful collective intelligence for the humans.

Also, I would say that there are two important features that come from the human culture: The first is that human collective intelligence can improve during history, because each new generation can improve the symbolic systems, the technology, and the social institutions; so there is an evolution of human collective intelligence and, of course, we are talking about a cultural evolution, not a biological evolution. And then, finally, and maybe the most important feature of human collective intelligence, is that each unit of the human collectivity has an ability to reflect, to think by itself. We have individual consciousness, unfortunately for them, the ants don`t; so the fact that the humans have individual consciousness creates at the level of the social cognition something that it is very powerful. That is the main difference between human and animal collective intelligence.

C.M: Do the writing and digital technologies also contribute to this difference?

P.L: In the oral culture, there was certain kind of transmission of knowledge, but of course, when we invented the writing systems we were able to accumulate much more knowledge to transmit to the next generations. With the invention of the diverse writing systems, and then their improvements -like the invention of the alphabet, the invention of the paper, the printing press, and then the electronic media- human collective intelligence expanded. So, for example, the ability to build libraries, to build scientific coordination and collaboration, the communication supported by the telephone, the radio, the television makes human collective intelligence more powerful, and I think that it will be the main challenge our generation and the next will have to face: to take advantage of the digital tools; the computer, the internet, the smartphones, et caetera; to discover new ways to improve our cognitive abilities, our memory, our communication, our problem solving abilities, our abilities to coordinate and collaborate, and so on.

C.M: In an interview conducted by Howard Rheingold, you mentioned that every device and technology that have the purpose of enhancing language also enhance collective intelligence and, at the same time, have an impact on cognitive skills such as memory, collaboration and the ability to connect with one another. Taking this into account:

  • It is said that today, the enhancement of cognitive abilities manifests in different ways: from fandoms and wikis, to crowdsourcing projects that are created with the intent of finding effective treatments for serious illnesses. Do you consider that every one of these manifestations contribute in the same way towards the expansion of our collective intelligence?

P.L: Maybe the most important sector where we should put particular effort is scientific research and learning, because we are talking about knowledge, so the most important part is the creation of knowledge, the dissemination of knowledge or, generally, the collective and individual learning.

Today there is a transformation of communication in the scientific community; more and more journals are open and online, people are doing virtual teams, they communicate by internet, people are using big amounts of digital data, and they are processing this data with computer power; so we are already witnessing this augmentation, but we are just at the beginning of this new approach.

In the case of learning I think it is very important that we recognize the emergence of new ways of learning online collaboratively, where people who want to learn are helping each other, are communicating, are accumulating common memories from where they can take what is interesting for them. This collective learning is not limited to schools; it happens in all kinds of social environments. We could call this “knowledge management”, and there is an individual or personal aspect of this knowledge management that some people call “personal knowledge management”: choosing the right sources on the internet, featuring the sources, categorizing information, doing synthesis, sharing these synthesis on social media, looking for a feedback, initiating a conversation, and so on. We have to realize that learning is and always has been an individual process at is core. Someone has to learn; you cannot learn for someone else. Help other people to learn, this is teaching; but the learner is doing the real work. Then, if the learners are helping each other, you have a process of collective learning. Of course, it works better if these people are interested in the same topics or if they are engaged in the same activities.

Collective learning augmentation is something that is very general and that has increased with the online communication. It also happens at the political level; there is an augmented deliberation, because people can discuss easily on the internet and also there is an enhanced coordination (for public demonstrations and similar things).

  • M: With the passage of time, collective intelligence becomes less a human quality and more one akin to machines; this affair worries more than one individual. What is your stance in the wake of this reality?

P.L: There is a process of artificialization of cognition in general that is very old; it began with the writing, with books; it is already a kind of externalization or objectification of memory. I mean, a library, for instance, is something that is completely material, completely technical, and without libraries we would be much less intelligent.

We cannot be against libraries because instead of being pure brain they are just paper, and ink, and buildings, and index cards. Similarly, it makes no sense that we “revolt” against computer and against the internet. It is the same kind of reasoning than with the libraries, it is just another technology, more powerful, but it is the same idea. It is an augmentation of our cognitive ability -individual and collective-, so it is absurd to be afraid of it.

But we have to distinguish very clearly the material support and the texts. The texts come from our mind, but the text that is in my mind can be projected on paper as well as in a computer network. What it is really important here is the text.

IEML AND THE FUTURE OF COLLECTIVE INTELLIGENCE

C.M: You’ve mentioned before that what we define today as the “semantic web”, more than being based on semantic principles, is based on logical principles. According to your ideas, this represents a roadblock in making the most out of the possibilities offered by digital media. As an alternative, you proposed the IEML (Information Economy Meta Language).

  • Could you elaborate on the basic differences between the semantic web and the IEML?

P.L: The so called “semantic web” –in fact, people call it now “web of data”, and it is a better term for it– is based on very well known principles of artificial intelligence that were developed in the 70s, the 80s, and that were adapted to the web.

Basically, you have a well-organized database, and you have rules to compute the relations between different parts of the database, and these rules are mainly logical rules. IEML works in a completely different manner: you have as many data as you want, and you categorize this data in IEML.

IEML is a language, not a computer language, but an artificial human language. So you can say “the sea”, “this person”, or anything… There are words in IEML, there are no words in the semantic web formats, it doesn’t work like this.

In this artificial language that is IEML, each word is in semantic relations with the other words in the dictionary. So, all the words are intertwined by semantic relations, and are perfectly defined. When you use these words, create sentences, or create texts; you create new relationships between the words, grammatical relationships.

And from texts written in IEML you have algorithms that make automatic relations inside those sentences, from one sentence to the other, and so on. So you have a whole semantic network inside the text that is automatically computed, and even more, you can automatically compute the semantic relations between any text and any library of texts.

An IEML text automatically creates its own semantic relations with all the other texts, and these texts in IEML can automatically translate themselves into natural languages; Spanish, English, Portuguese or Chinese… So, when you use IEML to categorize data, you create automatically semantic links between the data; with all the openness, the subtleness, and the ability to say exactly what you want that language can offer you.

You can categorize any type of content; images, music, software, articles, websites, books, any kind of information. You can categorize these in IEML and at the same time you create links within the data because of the links that are internal to the language.

  • M: Can we consider metatags, hashtags, and Twitter lists as a precedent to the IEML?

P.L: Yes, exactly. I have been inspired by the fact that people are already categorizing data. They started doing this with social bookmarking sites, such as del.icio.us. The act of curation today goes with the act of categorization, of tagging. We do this very often on Twitter, and now we can do it on Facebook, on Google Plus, on Youtube, on Flickr, and so on. The thing is that these tags don`t have the ability to interconnect with other tags and to create a big and consistent semantic network. In addition, these tags are in different natural languages.

From the point of view of the user, it will be the same action, but tagging in IEML will just be more powerful.

  • M: What will the IEML’s initial array of applications be?

P.L: I hope the main applications will be in the creation of collective intelligence games; games of categorization and evaluation of data; a sort of collective curation that will help people to create a very useful memory for their collaborative learning. That, for me, would be the most interesting application, and of course, the creation of a inter-linguistic or trans-linguistic environment.

BIG DATA AND COLLECTIVE INTELLIGENCE

C.M: You’ve referred to big data as one of the phenomena that could take collective intelligence to a whole new level. You’ve mentioned as well that in fact this type of information can only be processed by powerful institutions (governments, corporations, etc.), and that only when the capacity to read big data is democratized, will there truly be a revolution.

Would you say that the IEML will have a key role in this process of democratization? If so, why?

P.L: I think that currently there are two important aspects of big data analytics: First, we have more and more data every day. We have to realize this. And, second, the main producer of this immense flow of data is ourselves. We, the users of the Internet are producing data. So currently lots of people are trying to make sense of this data and here you have two “avenues”:

First is the avenue that is more scientific. In natural sciences you have a lot of data –genetic data, data coming from physics or astronomy-, and also something that is relatively new; the data coming from human sciences. This is called “digital humanities”, and it takes data from spaces like social media and tries to make sense of it from a sociological point of view. Or you take data from libraries and you try to make sense of it from a literary or historical point of view. This is one application.

The second application is in business, in administration –private or public. You have many companies that are trying to sell services to companies and to governments.

I would say that there are two big problems with this landscape:

The first is related to the methodology; today we use mainly statistical methods and logical methods. It is very difficult to have a semantic analysis of the data, because we do not have a semantic code, and let’s remember that every thing we analyze is coded before we analyze it. So you can code quantitatively and you have statistical analysis, code logically and you have logical analysis. So you need a semantic code to have a semantic analysis. We do not have it yet, but I think that IEML will be that code.

The second problem is the fact that this analysis of data is currently in the hands of very powerful or rich players –big governments, big companies. It is expensive and it is not easy to do –you need to learn how to code, you need to learn how to read statistics…

I think that with IEML –because people will be able to code semantically the data– people will also be able to do semantic analysis with the help of the right user-interfaces. They will be able to manipulate this semantic code in natural language, it will be open to everybody.

This famous “revolution of big data” is just at its beginning. In the coming decades there will be much more data and many more powerful tools to analyze it. And it will be democratized; the tools will be open and free.

A BRIEF READING OF THE CURRENT SITUATION IN VENEZUELA

C.M: In the interview conducted by Howard Rheingold, you defined collective intelligence as a synergy between personal and collective knowledge; as an example, you mentioned the curation process that we, as users of social media, develop and that in most cases serves as resource material for others to use. Regarding this particular issue, I’d like to analyze with you this particular situation using collective intelligence:

During the last few months, Venezuela has suffered an important information blackout, product of the government’s monopolized grasp of the majority of the media outlets, the censorship efforts made by the State’s organisms, and the self-imposed censorship of the last independent media outlets of the country. As a response to this blockade, Venezuelans have taken upon themselves to stay informed by invading the digital space. In a relatively short period of time, various non-standard communication networks have been created, verified source lists have been consolidated, applications have been developed, and a sort of ethics code has been established in order to minimize the risk of spreading false information.

Based on your theory on collective intelligence, what reading could you give of this phenomenon?

P.L: You have already given a response to this; I have nothing else to say. Of course I am against any kind of censorship. We have already seen that many authoritarian regimes do not like the internet, because it represents an augmentation of freedom of expression. Not only in Venezuela but in fact in different countries, governments have tried to limit free expression and the people that are politically active and that are not pro-government have tried to organize themselves through the internet. I think that the new environment created by social media –Twitter, Facebook, Youtube, the blogs, and all the apps that help people find the information they need– helps to the coordination and the discussion inside all these opposition movements, and this is the current political aspect of collective intelligence.

E-sphere-copie

An IEML paradigm projected onto a sphere.

Communication presented at The Future of Text symposium IV at the Google’s headquarters in London (2014).

Symbolic manipulation accounts for the uniqueness of human cognition and consciousness. This symbolic manipulation is now augmented by algorithms. The problem is that we still have not invented a symbolic system that could fully exploit the algorithmic medium in the service of human development and human knowledge.

E-Cultural-revolutions

The slide above describes the successive steps in the augmentation of symbolic manipulation.

The first revolution is the invention of writing with symbols endowed with the ability of self-conservation. This leads to a remarquable augmentation of social memory and to the emergence of new forms of knowledge.

The second revolution optimizes the manipulation of symbols like the invention of the alphabet (phenician, hebrew, greek, roman, arab, cyrilic, korean, etc.), the chinese rational ideographies, the indian numeration system by position with a zero, paper and the early printing techniques of China and Korea.

The third revolution is the mecanization and the industrialization of the reproduction and diffusion of symbols, like the printing press, disks, movies, radio, TV, etc. This revolution supported the emergence of the modern world, with its nation states, industries and its experimental mathematized natural sciences.

We are now at the beginning of a fourth revolution where an ubiquitous and interconnected infosphere is filled with symbols – i.e. data – of all kinds (music, voice, images, texts, programs, etc.) that are being automatically transformed. With the democratization of big data analysis, the next generations will see the advent of a new scientific revolution… but this time it will be in the humanities and social sciences.

E-Algorithmic-medium

Let’s have a closer look to the algorithmic medium. Four layers have been added since the middle of the 20th century.

- The first layer is the invention of the automatic digital computer itself. We can describe computation as « processing on data ». It is self-evident that computation cannot be programmed if we don’t have a very precise addressing system for the data and for the specialized operators/processors that will transform the data. At the beginning these addressing systems were purely local and managed by operating systems.

- The second layer is the emergence of a universal addressing system for computers, the Internet protocol, that allowed for exchange of data and collaborative computing across the telecommunication network.

- The third layer is the invention of a data universal addressing and displaying system (http, html), welcoming a hypertextual global database: the World Wide Web. We all know that the Web has had a deep social, cultural and economic impact in the last fifteen years.

- The construction of this algorithmic medium is ongoing. We are now ready to add a fourth layer of addressing and, this time, we need a universal addressing system for metadata, and in particular for semantic metadata. Why? First, we are still unable to resolve the problem of semantic interoperability across languages, classifications and ontologies. And secondly, except for some approximative statistical and logical methods, we are still unable to compute semantic relations, including distances and differences. This new symbolic system will be a key element to a future scientific revolution in the humanities and social sciences leading to a new kind of reflexive collective intelligence for our species. There lies the future of text.

E-IEML-math2

My version of a universal semantic addressing system is IEML, an artificial language that I have invented and developped over the last 20 years.

IEML is based on a simple algebra with six primitive variables (E, U, A, S, B, T) and two operations (+, ×). The multiplicative operation builds the semantic links. This operation has three roles: a depature node, an arrival node and a tag for the link. The additive operation gathers several links to build a semantic network and recursivity builds semantic networks with multiple levels of complexity: it is « fractal ». With this algebra, we can automatically compute an internal network corresponding to any variable and also the relationships between any set of variables.

IEML is still at the stage of fundamental research but we now have an extensive dictionary – a set of paradigms – of three thousand terms and grammatical algorithmic rules that conform to the algebra. The result is a language where texts self-translate into natural language, manifest as semantic networks and compute collaboratively their relationships and differences. Any library of IEML texts then self-organizes into ecosystems of texts and data categorized in IEML will self-organize according to their semantic relationships and differences.

E-Collective-intel2

Now let’s take an example of an IEML paradigm, the paradigm of “Collective Intelligence in the service of human development” for instance, where we will grasp the meaning of the primitives and in which way they are being used.

-First, let’s look at the dialectic between virtual (U) and actual (A) human development represented by the rows.

-Then, the ternary dialectic between sign (S), being (B) and thing (T) are represented by the columns.

-The result is six broad interdependent aspects of collective intelligence corresponding to the intersections of the rows (virtual/actual) and columns (sign/being/thing).

- Each of these six broad aspects of CI are then decomposed into three sub-aspects corresponding to the sign/being/thing dialectic.

The semantic relations (symmetries and inclusions) between the terms of a paradigm are all explicit and therefore computable. All IEML paradigms are designed with the same principles as this one, and you can build phrases by assembling the terms through multiplications and additions.

Fortunatly, fundamental research is now finished. I will spend the next months preparing a demo of the automatic computing of semantic relations between data coded in IEML. With tools to come…

E-Future-text2

Human-dev-CI

E = Emptiness, U = Virtual, A = Actual, S = Sign, B = Being, T = Thing


IEML medium

The algorithmic medium

Before the algorithmic medium was the typographical medium (printing press, broadcasting) that industrialized and automated the reproduction of information. In the new algorithmic medium, information is, de facto, ubiquitous and automation now concentrates on the transformation of information.

The algorithmic medium is built from three interdependent components: the Web as a universal database (big data), the Internet as a universal computer (cloud), and the algorithms in the hands of people.

IEML (the Information Economy MetaLanguage) has been designed to exploit the full potential of the new algorithmic medium.

IEML, who and what is it for?

It would have been impossible to have designed IEML before the automatic-computing era and, a fortiori, to implement and use it. IEML was designed for digital natives, and built to take advantage of the new pervasive social computing supported by big data, the cloud and open algorithms.

IEML is a language

IEML is an artificial language that has the expressive power of any natural language (like English, French, Russian, Arabic, etc.). In other words, you can say in IEML whatever you want and its opposite, with varying degrees of precision.

IEML is an inter-linguistic semantic code

We can describe IEML as a sort of pivot language. Its reading/writing interface pops up in the the natural language that you want with an IEML text that self-translates in that specific language.

IEML is a semantic metadata system

IEML was also designed as a tagging system supporting semantic interoperability. Its main use is data categorization. As a universal system addressing concepts, IEML can complement the universal addressing of data on the Web and of processors on the Internet.

IEML is a programming language

An IEML text programs the construction of a semantic network in natural languages and it computes its relations and its semantic differences with other texts.

IEML is a symbolic system

As with any other symbolic systems, IEML is a result from the interaction of three interdependent layers of linguistic complexity: a syntax, semantics and pragmatics.

EN-C-14-MMOM

IEML syntax

IEML syntax is an algebraic topology: this means that a complex network of relations (topology) is coded by an algebraic expression.

IEML Algebra

IEML algebra is based on six basic variables {E, U, A, S, B, T} and two operations {+, ×}. The multiplication builds links (node A, node B, tag) and the addition operation creates graphs by connecting the links. The results of any algebraic operation can be used as a basis for new operations. This recursivity allows the construction of successive layers of complexity.

A computable Topology

Each distinct variable of the IEML algebra corresponds to a distinct graph. Given a set of variables, their relations and their semantic differences are computable.

EN-D-10-MMu_MMu

IEML semantics

As it is projected onto an algebraic topology, IEML’s semantics becomes computable.

The semantic projection onto an algebraic topology

- An IEML script normalizes the notation of an algebraic expression.
– The IEML dictionary is organized as a set of paradigms, a paradigm being a semantic network of terms. Each IEML term can be translated in natural languages.
– With IEML operations {+, ×} and its recursivity, the IEML grammar allows the construction of morphemes, words, clauses, phrases, complex propositions, texts and hypertexts.

The grammatical algorithms

Embedded in IEML, any grammatical algorithms can compute:
– the intra-textual semantic network corresponding to an IEML text
– the translation of an IEML semantic network into any chosen natural language
– the inter-textual semantic network and the semantic differences corresponding to any set of IEML texts.

IEML pragamatics

IEML pragmatics is oriented towards self-organization and reflexive collective intelligence.

A new approach to data and social networks

When data are categorized in IEML, they self-organize into semantic networks and automatically compute their semantic relations and differences. Moreover, when communities engage in collaborative data curation using IEML, what they get in return is a simulated image of their collective intelligence process.

Modeling ideas as dynamic texts

We can model our collective intelligence into an evolving ecosystem of ideas. In this framework, an idea can be defined as the assembly of a concept, an affect, a percept (a sensory-motor image) and a social context. In a dynamic text, the concept is represented by an IEML text, the affect by credits (positive or negative), the percept by a multimedia dataset and the social context as an author (a player) a community (a semantic game) and a time-stamp.

Automatic computing of dynamic hypertexts

Thanks to IEML grammatical algorithms, any set of dynamic texts self-organizes into a dynamic hypertext that represents an ecosystem of ideas in the form of an immersive simulation. Now, a reflexive collective intelligence can emerge from a collaborative data curation.

lampadaire-5

Critique réciproque de l’intelligence artificielle et des sciences humaines

Je me souviens d’avoir participé, vers la fin des années 1980, à un Colloque de Cerisy sur les sciences cognitives auquel participaient quelques grands noms américains de la discipline, y compris les tenants des courants neuro-connexionnistes et logicistes. Parmi les invités, le philosophe Hubert Dreyfus (notamment l’auteur de What Computers Can’t Do, MIT Press, 1972) critiquait vertement les chercheurs en intelligence artificielle parce qu’ils ne tenaient pas compte de l’intentionnalité découverte par la phénoménologie. Les raisonnements humains réels, rappelait-il, sont situés, orientés vers une fin et tirent leur pertinence d’un contexte d’interaction. Les sciences de la cognition dominées par le courant logico-statistique étaient incapables de rendre compte des horizons de conscience qui éclairent l’intelligence. Dreyfus avait sans doute raison, mais sa critique ne portait pas assez loin, car ce n’était pas seulement la phénoménologie qui était ignorée. L’intelligence artificielle (IA) n’intégrait pas non plus dans la cognition qu’elle prétendait modéliser la complexité des systèmes symboliques et de la communication humaine, ni les médias qui la soutiennent, ni les tensions pragmatiques ou les relations sociales qui l’animent. A cet égard, nous vivons aujourd’hui dans une situation paradoxale puisque l’IA connaît un succès pratique impressionnant au moment même où son échec théorique devient patent.

Succès pratique, en effet, puisqu’éclate partout l’utilité des algorithmes statistiques, de l’apprentissage automatique, des simulations d’intelligence collective animale, des réseaux neuronaux et d’autres systèmes de reconnaissance de formes. Le traitement automatique du langage naturel n’a jamais été aussi populaire, comme en témoigne par exemple l’usage de Google translate. Le Web des données promu par le WWW consortium (dirigé par Sir Tim Berners-Lee). utilise le même type de règles logiques que les systèmes experts des années 1980. Enfin, les algorithmes de computation sociale mis en oeuvre par les moteurs de recherche et les médias sociaux montrent chaque jour leur efficacité.

Mais il faut bien constater l’échec théorique de l’IA puisque, malgré la multitude des outils algorithmiques disponibles, l’intelligence artificielle ne peut toujours pas exhiber de modèle convaincant de la cognition. La discipline a prudemment renoncé à simuler l’intelligence dans son intégralité. Il est clair pour tout chercheur en sciences humaines ayant quelque peu pratiqué la transdisciplinarité que, du fait de sa complexité foisonnante, l’objet des sciences humaines (l’esprit, la pensée, l’intelligence, la culture, la société) ne peut être pris en compte dans son intégralité par aucune des théories computationnelles de la cognition actuellement disponible. C’est pourquoi l’intelligence artificielle se contente dans les faits de fournir une boîte à outils hétéroclite (règles logiques, syntaxes formelles, méthodes statistiques, simulations neuronales ou socio-biologiques…) qui n’offrent pas de solution générale au problème d’une modélisation mathématique de la cognition humaine.

Cependant, les chercheurs en intelligence artificielle ont beau jeu de répondre à leurs critiques issus des sciences humaines : « Vous prétendez que nos algorithmes échouent à rendre compte de la complexité de la cognition humaine, mais vous ne nous en proposez vous-mêmes aucun pour remédier au problème. Vous vous contentez de pointer du doigt vers une multitude de disciplines, plus « complexes » les unes que les autres (philosophie, psychologie, linguistique, sociologie, histoire, géographie, littérature, communication…), qui n’ont pas de métalangage commun et n’ont pas formalisé leurs objets ! Comment voulez-vous que nous nous retrouvions dans ce bric-à-brac ? » Et cette interpellation est tout aussi sensée que la critique à laquelle elle répond.

lampadaire-13c0c12

Synthèse de l’intelligence artificielle et des sciences humaines

Ce que j’ai appris de Hubert Dreyfus lors de ce colloque de 1987 où je l’ai rencontré, ce n’était pas tant que la phénoménologie serait la clé de tous les problèmes d’une modélisation scientifique de l’esprit (Husserl, le père de la phénoménologie, pensait d’ailleurs que la phénoménologie – une sorte de méta-science de la conscience – était impossible à mathématiser et qu’elle représentait même le non-mathématisable par exellence, l’autre de la science mathématique de la nature), mais plutôt que l’intelligence artificielle avait tort de chercher cette clé dans la seule zone éclairée par le réverbère de l’arithmétique, de la logique et des neurones formels… et que les philosophes, herméneutes et spécialistes de la complexité du sens devaient participer activement à la recherche plutôt que de se contenter de critiquer. Pour trouver la clé, il fallait élargir le regard, fouiller et creuser dans l’ensemble du champ des sciences humaines, aussi opaque au calcul qu’il semble à première vue. Nous devions disposer d’un outil à traiter le sens, la signification, la sémantique en général, sur un mode computationnel. Une fois éclairé par le calcul le champ immense des relations sémantiques, une science de la cognition digne de ce nom pourrait voir le jour. En effet, pour peu qu’un outil symbolique nous assure du calcul des relations entre signifiés, alors il devient possible de calculer les relations sémantiques entre les concepts, entre les idées et entre les intelligences. Mû par ces considérations, j’ai développé la théorie sémantique de la cognition et le métalangage IEML : de leur union résulte la sémantique computationnelle.

Les spécialistes du sens, de la culture et de la pensée se sentent démunis face à la boîte à outils hétérogène de l’intelligence artificielle : ils n’y reconnaissent nulle part de quoi traiter la complexité contextuelle de la signification. C’est pourquoi la sémantique computationnelle leur propose de manipuler les outils algorithmiques de manière cohérente à partir de la sémantique des langues naturelles. Les ingénieurs s’égarent face à la multitude bigarrée, au flou artistique et à l’absence d’interopérabilité conceptuelle des sciences humaines. Remédiant à ce problème, la sémantique computationnelle leur donne prise sur les outils et les concepts foisonnants des insaisissables sciences humaines. En somme, le grand projet de la sémantique computationnelle consiste à construire un pont entre l’ingénierie logicielle et les sciences humaines de telle sorte que ces dernières puissent utiliser à leur service la puissance computationnelle de l’informatique et que celle-ci parvienne à intégrer la finesse herméneutique et la complexité contextuelle des sciences humaines. Mais une intelligence artificielle grande ouverte aux sciences humaines et capable de calculer la complexité du sens ne serait justement plus l’intelligence artificielle que nous connaissons aujourd’hui. Quant à des sciences humaines qui se doteraient d’un métalangage calculable, qui mobiliseraient l’intelligence collective et qui maîtriseraient enfin le médium algorithmique, elles ne ressembleraient plus aux sciences humaines que nous connaissons depuis le XVIIIe siècle : nous aurions franchi le seuil d’une nouvelle épistémè.

biface

Le concepteur

J’ai saisi dès la fin des années 1970 que la cognition était une activité sociale et outillée par des technologies intellectuelles. Il ne faisait déjà aucun doute pour moi que les algorithmes allaient transformer le monde. Et si je réfléchis au sens de mon activité de recherche depuis les trente dernières années, je réalise qu’elle a toujours été orientée vers la construction d’outils cognitifs à base d’algorithmes.

A la fin des années 1980 et au début des années 1990, la conception de systèmes experts et la mise au point d’une méthode pour l’ingénierie des connaissances m’ont fait découvrir la puissance du raisonnement automatique (J’en ai rendu compte dans De la programmation considérée comme un des beaux-arts, Paris, La Découverte, 1992). Les systèmes experts sont des logiciels qui représentent les connaissances d’un groupe de spécialistes sur un sujet restreint au moyen de règles appliquées à une base de données soigneusement structurée. J’ai constaté que cette formalisation des savoir-faire empiriques menait à une transformation de l’écologie cognitive des collectifs de travail, quelque chose comme un changement local de paradigme. J’ai aussi vérifié in situ que les systèmes à base de règles fonctionnaient en fait comme des outils de communication de l’expertise dans les organisations, menant ainsi à une intelligence collective plus efficace. J’ai enfin expérimenté les limites de la modélisation cognitive à base purement logique : elle ne débouchait alors, comme les ontologies d’aujourd’hui, que sur des micro-mondes de raisonnement cloisonnés. Le terme d’« intelligence artificielle », qui évoque des machines capables de décisions autonomes, était donc trompeur.

Je me suis ensuite consacré à la conception d’un outil de visualisation dynamique des modèles mentaux (Ce projet est expliqué dans L’Idéographie dynamique, vers une imagination artificielle, La Découverte, Paris, 1991). Cet essai m’a permis d’explorer la complexité sémiotique de la cognition en général et du langage en particulier. J’ai pu apprécier la puissance des outils de représentation de systèmes complexes pour augmenter la cognition. Mais j’ai aussi découvert à cette occasion les limites des modèles cognitifs non-génératifs, comme celui que j’avais conçu. Pour être vraiment utile, un outil d’augmentation intellectuelle devait être pleinement génératif, capable de simuler des processus cognitifs et de faire émerger de nouvelles connaissances.

Au début des années 1990 j’ai co-fondé une start up qui commercialisait un logiciel de gestion personnelle et collective des connaissances. J’ai été notamment impliqué dans l’invention du produit, puis dans la formation et le conseil de ses utilisateurs (Voir Les Arbres de connaissances, avec Michel Authier, La Découverte, Paris, 1992). Les Arbres de connaissances intégraient un système de représentation interactive des compétences et connaissances d’une communauté, ainsi qu’un système de communication favorisant l’échange et l’évaluation des savoirs. Contrairement aux outils de l’intelligence artificielle classique, celui-ci permettait à tous les utilisateurs d’enrichir librement la base de données commune. J’ai retenu de mon expérience dans cette entreprise la nécessité de représenter les contextes pragmatiques par des simulations immersives, dans lesquelles chaque ensemble de données sélectionné (personnes, connaissances, projets, etc.) réorganise l’espace autour de lui et génère automatiquement une représentation singulière du tout : un point de vue. Mais j’ai aussi rencontré lors de ce travail le défi de l’interopérabilité sémantique, qui allait retenir mon attention pendant les vingt-cinq années suivantes. En effet, mon expérience de constructeur d’outils et de consultant en technologies intellectuelles m’avait enseigné qu’il était impossible d’harmoniser la gestion personnelle et collective des connaissances à grande échelle sans langage commun. La publication de L’intelligence collective en 1994 traduisait en théorie ce que j’avais entrevu dans ma pratique : de nouveaux outils d’augmentation cognitive à support algorithmique allaient supporter des formes de collaboration intellectuelle inédites. Mais le potentiel des algorithmes ne serait pleinement exploité que grâce à un métalangage rassemblant les données numérisées dans le même système de coordonnées sémantique.

A partir du milieu des années 1990, pendant que je dévouais mon temps libre à concevoir ce système de coordonnées (qui ne s’appelait pas encore IEML), j’ai assisté au développement progressif du Web interactif et social. Le Web offrait pour la première fois une mémoire universelle accessible indépendamment de la localisation physique de ses supports et de ses lecteurs. La communication multimédia entre points du réseau était instantanée. Il suffisait de cliquer sur l’adresse d’une collection de données pour y accéder. Au concepteur d’outils cognitifs que j’étais, le Web apparaissait comme une opportunité à exploiter.

L’utilisateur

J’ai participé pendant près d’un quart de siècle à de multiples communautés virtuelles et médias sociaux, en particulier ceux qui outillaient la curation collaborative des données. Grâce aux plateformes de social bookmarking de Delicious et Diigo, j’ai pu expérimenter la mise en commun des mémoires personnelles pour former une mémoire collective, la catégorisation coopérative des données, les folksonomies émergeant de l’intelligence collective, les nuages de tags qui montrent le profil sémantique d’un ensemble de données. En participant à l’aventure de la plateforme Twine créée par Nova Spivack entre 2008 et 2010, j’ai mesuré les points forts de la gestion collective de données centrée sur les sujets plutôt que sur les personnes. Mais j’ai aussi touché du doigt l’inefficacité des ontologies du Web sémantique – utilisées entre autres par Twine – dans la curation collaborative de données. Les succès de Twitter et de son écosystème m’ont confirmé dans la puissance de la catégorisation collective des données, symbolisée par le hashtag, qui a finalement été adopté par tous les médias sociaux. J’ai rapidement compris que les tweets étaient des méta données contenant l’identité de l’auteur, un lien vers les données, une catégorisation par hashtag et quelques mots d’appréciation. Cette structure est fort prometteuse pour la gestion personnelle et collective des connaissances. Mais parce que Twitter est fait d’abord pour la circulation rapide de l’information, son potentiel pour une mémoire collective à long terme n’est pas suffisamment exploité. C’est pourquoi je me suis intéressé aux plateformes de curation de données plus orientées vers la mémoire à long terme comme Bitly, Scoop.it! et Trove. J’ai suivi sur divers forums le développement des moteurs de recherche sémantiques, des techniques de traitement du langage naturel et des big data analytics, sans y trouver les outils qui feraient franchir à l’intelligence collective un seuil décisif. Enfin, j’ai observé comment Google réunissait les données du Web dans une seule base et comment la firme de Mountain View exploitait la curation collective des internautes au moyen de ses algorithmes. En effet, les résultats du moteur de recherche sont basés sur les hyperliens que nous créons et donc sur notre collaboration involontaire. Partout dans les médias sociaux je voyais se développer la gestion collaborative et l’analyse statistique des données, mais à chaque pas je rencontrais l’opacité sémantique qui fragmentait l’intelligence collective et limitait son développement.

La future intelligence algorithmique reposera forcément sur la mémoire hypertextuelle universelle. Mais mon expérience de la curation collaborative de données me confirmait dans l’hypothèse que j’avais développée dès le début des années 1990, avant même le développement du Web. Tant que la sémantique ne serait pas transparente au calcul et interopérable, tant qu’un code universel n’aurait pas décloisonné les langues et les systèmes de classification, notre intelligence collective ne pourrait faire que des progrès limités.

Mon activité de veille et d’expérimentation a nourri mon activité de conception technique. Pendant les années où je construisais IEML, pas à pas, à force d’essais et d’erreurs, de versions, de réformes et de recommencements, je ne me suis jamais découragé. Mes observations me confirmaient tous les jours que nous avions besoin d’une sémantique calculable et interopérable. Il me fallait inventer l’outil de curation collaborative de données qui reflèterait nos intelligences collectives encore séparées et fragmentées. Je voyais se développer sous mes yeux l’activité humaine qui utiliserait ce nouvel outil. J’ai donc concentré mes efforts sur la conception d’une plateforme sémantique universelle où la curation de données serait automatiquement convertie en simulation de l’intelligence collective des curateurs.

Mon expérience de concepteur technique et de praticien a toujours précédé mes synthèses théoriques. Mais, d’un autre côté, la conception d’outils devait être associée à la connaissance la plus claire possible de la fonction à outiller. Comment augmenter la cognition sans savoir ce qu’elle est, sans connaître son fonctionnement ? Et puisque, dans le cas qui m’occupait, l’augmentation s’appuyait précisément sur un saut de réflexivité, comment aurais-je pu réfléchir, cartographier ou observer quelque chose dont je n’aurais eu aucun modèle ? Il me fallait donc établir une correspondance entre un outil interopérable de catégorisation des données et une théorie de la cognition. A suivre dans mon prochain livre: L’intelligence algorithmique

Miroir-delvaux-2

Conférence à Science Po-Paris le 2 octobre 2014 à 17h 30

Voici ma présentation (PDF) : 2014-Master-Class

Texte introductif à la conférence


Réfléchir l’intelligence

Quels sont les enseignements de la philosophie sur l’augmentation de l’intelligence ? « Connais-toi toi-même » nous avertit Socrate à l’aurore de la philosophie grecque. Sous la multiplicité des traditions et des approches, en Orient comme en Occident, il existe un chemin universellement recommandé : pour l’intelligence humaine, la manière la plus sûre de progresser est d’atteindre un degré supérieur de réflexivité.

Or depuis le début du XXIe siècle, nous apprenons à nous servir d’automates de manipulation symbolique opérant dans un réseau ubiquitaire. Dans le médium algorithmique, nos intelligences personnelles s’interconnectent et fonctionnent en multiples intelligences collectives enchevêtrées. Puisque le nouveau médium abrite une part croissante de notre mémoire et de nos communications, ne pourrait-il pas fonctionner comme un miroir scientifique de nos intelligences collectives ? Rien ne s’oppose à ce que le médium algorithmique supporte bientôt une vision d’ensemble objectivable et mesurable du fonctionnement de nos intelligences collectives et de la manière dont chacun de nous y participe. Dès lors, un méta-niveau d’apprentissage collectif aura été atteint.

En effet, des problèmes d’une échelle de complexité supérieure à tous ceux que l’humanité a été capable de résoudre dans le passé se posent à nous. La gestion collective de la biosphère, le renouvellement des ressources énergétiques, l’aménagement du réseau de mégapoles où nous vivons désormais, les questions afférentes au développement humain (prospérité, éducation, santé, droits humains), vont se poser avec une acuité croissante dans les décennies et les siècles qui viennent. La densité, la complexité et le rythme croissant de nos interactions exigent de nouvelles formes de coordination intellectuelle. C’est pourquoi j’ai cherché toute ma vie la meilleure manière d’utiliser le médium algorithmique afin d’augmenter notre intelligence. Quelques titres parmi les ouvrages que j’ai publié témoignent de cette quête : La Sphère sémantique. Computation, cognition, économie de l’information (2011) ; Qu’est-ce que le virtuel ? (1995) ; L’Intelligence collective (1994) ; De la Programmation considérée comme un des beaux-arts (1992) ; Les Arbres de connaissances (1992) ; L’Idéographie dynamique (1991) ; Les Technologies de l’intelligence (1990) ; La Machine univers. Création, cognition et culture informatique (1987)… Après avoir obtenu ma Chaire de Recherche du Canada en Intelligence Collective à l’Université d’Ottawa en 2002, j’ai pu me consacrer presque exclusivement à une méditation philosophique et scientifique sur la meilleure manière de réfléchir l’intelligence collective avec les moyens de communication dont nous disposons aujourd’hui, méditation dont j’ai commencé à rendre compte dans La Sphère Sémantique et que j’approfondirai dans L’intelligence algorithmique (à paraître).

Élaboration d’un programme de recherche

Les grands sauts évolutifs ou, si l’on préfère, les nouveaux espaces de formes, sont générés par de nouveaux systèmes de codage. Le codage atomique génère les formes moléculaires, le codage génétique engendre les formes biologiques, le codage neuronal simule les formes phénoménales. Le codage symbolique enfin, propre à l’humanité, libère l’intelligence réflexive et la culture.

Je retrouve dans l’évolution culturelle la même structure que dans l’évolution cosmique : ce sont les progrès du codage symbolique qui commandent l’agrandissement de l’intelligence humaine. En effet, notre intelligence repose toujours sur une mémoire, c’est-à-dire un ensemble d’idées enregistrées, conceptualisées et symbolisées. Elle classe, retrouve et analyse ce qu’elle a retenu en manipulant des symboles. Par conséquent, la prise de l’intelligence sur les données, ainsi que la quantité et la qualité des informations qu’elle peut en extraire, dépendent au premier chef des systèmes symboliques qu’elle utilise. Lorsqu’avec l’invention de l’écriture les symboles sont devenus auto-conservateurs, la mémoire s’est accrue, réorganisée, et un nouveau type d’intelligence est apparu, relevant d’une épistémè scribale, comme celle de l’Egypte pharaonique, de l’ancienne Mésopotamie ou de la Chine pré-confucéenne. Quand le médium écrit s’est perfectionné avec le papier, l’alphabet et la notation des nombres par position, alors la mémoire et la manipulation symbolique ont crû en puissance et l’épistémè lettrée s’est développée dans les empires grec, chinois, romain, arabe, etc. La reproduction et la diffusion automatique des symboles, de l’imprimerie aux médias électroniques, a multiplié la disponibilité des données et accéléré l’échange des idées. Née de cette mutation, l’intelligence typographique a édifié le monde moderne, son industrie, ses sciences expérimentales de la nature, ses états-nations et ses idéologies inconnues des époques précédentes. Ainsi, suivant la puissance des outils symboliques manipulés, la mémoire et l’intelligence collective évoluent, traversant des épistémès successives.

Evolution medias

La relation entre l’ouverture d’un nouvel espace de formes et l’invention d’un système de codage se confirme encore dans l’histoire des sciences. Et puisque je suis à la recherche d’une augmentation de la connaissance réflexive, la science moderne me donne justement l’exemple d’une communauté qui réfléchit sur ses propres opérations intellectuelles et qui se pose explicitement le problème de préciser l’usage qu’elle fait de ses outils symboliques. La plupart des grandes percées de la science moderne ont été réalisées par l’unification d’une prolifération de formes disparates au moyen d’un coup de filet algébrique. En physique, le premier pas est accompli par Galilée (1564-1642), Descartes (1596-1650), Newton (1643-1727) et Leibniz (1646-1716). A la place du cosmos clos et cloisonné de la vulgate aristotélicienne qu’ils ont reçu du Moyen-Age, les fondateurs de la science moderne édifient un univers homogène, rassemblé dans l’espace de la géométrie euclidienne et dont les mouvements obéissent au calcul infinitésimal. De même, le monde des ondes électromagnétiques est-il mathématiquement unifié par Maxwell (1831-1879), celui de la chaleur, des atomes et des probabilités statistiques par Boltzmann (1844-1906). Einstein (1869-1955) parvient à unifier la matière-espace-temps en un même modèle algébrique. De Lavoisier (1743-1794) à Mendeleïev (1834, 1907), la chimie émerge de l’alchimie par la rationalisation de sa nomenclature et la découverte de lois de conservation, jusqu’à parvenir au fameux tableau périodique où une centaine d’éléments atomiques sont arrangés selon un modèle unificateur qui explique et prévoit leurs propriétés. En découvrant un code génétique identique pour toutes les formes de vie, Crick (1916-2004) et Watson (1928-) ouvrent la voie à la biologie moléculaire.

Enfin, les mathématiques n’ont-elles pas progressé par la découverte de nouvelles manières de coder les problèmes et les solutions ? Chaque avancée dans le niveau d’abstraction du codage symbolique ouvre un nouveau champ à la résolution de problèmes. Ce qui apparaissait antérieurement comme une multitude d’énigmes disparates se résout alors selon des procédures uniformes et simplifiées. Il en est ainsi de la création de la géométrie démonstrative par les Grecs (entre le Ve et le IIe siècle avant l’ère commune) et de la formalisation du raisonnement logique par Aristote (384-322 avant l’ère commune). La même remontée en amont vers la généralité s’est produite avec la création de la géométrie algébrique par Descartes (1596-1650), puis par la découverte et la formalisation progressive de la notion de fonction. Au tournant des XIXe et XXe siècles, à l’époque de Cantor (1845-1918), de Poincaré (1854-1912) et de Hilbert (1862-1943), l’axiomatisation des théories mathématiques est contemporaine de la floraison de la théorie des ensembles, des structures algébriques et de la topologie.

Mon Odyssée encyclopédique m’a enseigné cette loi méta-évolutive : les sauts intellectuels vers des niveaux de complexité supérieurs s’appuient sur de nouveaux systèmes de codage. J’en viens donc à me poser la question suivante. Quel nouveau système de codage fera du médium algorithmique un miroir scientifique de notre intelligence collective ? Or ce médium se compose justement d’un empilement de systèmes de codage : codage binaire des nombres, codage numérique de caractères d’écriture, de sons et d’images, codage des adresses des informations dans les disques durs, des ordinateurs dans le réseau, des données sur le Web… La mémoire mondiale est déjà techniquement unifiée par tous ces systèmes de codage. Mais elle est encore fragmentée sur un plan sémantique. Il manque donc un nouveau système de codage qui rende la sémantique aussi calculable que les nombres, les sons et les images : un système de codage qui adresse uniformément les concepts, quelles que soient les langues naturelles dans lesquelles ils sont exprimés.

Medium-algo

En somme, si nous voulons atteindre une intelligence collective réflexive dans le médium algorithmique, il nous faut unifier la mémoire numérique par un code sémantique interopérable, qui décloisonne les langues, les cultures et les disciplines.

Tour d’horizon techno-scientifique

Désormais en possession de mon programme de recherche, il me faut évaluer l’avancée du médium algorithmique contemporain vers l’intelligence collective réflexive : nous n’en sommes pas si loin… Entre réalité augmentée et mondes virtuels, nous communiquons dans un réseau électronique massivement distribué qui s’étend sur la planète à vitesse accélérée. Des usagers par milliards échangent des messages, commandent des traitements de données et accèdent à toutes sortes d’informations au moyen d’une tablette légère ou d’un téléphone intelligent. Objets fixes ou mobiles, véhicules et personnes géo-localisés signalent leur position et cartographient automatiquement leur environnement. Tous émettent et reçoivent des flots d’information, tous font appel à la puissance du cloud computing. Des efforts de Douglas Engelbart à ceux de Steve Jobs, le calcul électronique dans toute sa complexité a été mis à la portée de la sensori-motricité humaine ordinaire. Par l’invention du Web, Sir Tim Berners-Lee a rassemblé l’ensemble des données dans une mémoire adressée par le même système d’URL. Du texte statique sur papier, nous sommes passé à l’hypertexte ubiquitaire. L’entreprise de rédaction et d’édition collective de Wikipedia, ainsi qu’une multitude d’autres initiatives ouvertes et collaboratives ont mis gratuitement à la portée de tous un savoir encyclopédique, des données ouvertes réutilisables et une foule d’outils logiciels libres. Des premiers newsgroups à Facebook et Twitter, une nouvelle forme de sociabilité par le réseau s’est imposée, à laquelle participent désormais l’ensemble des populations. Les blogs ont mis la publication à la portée de tous. Tout cela étant désormais acquis, notre intelligence doit maintenant franchir le pas décisif qui lui permettra de maîtriser un niveau supérieur de complexité cognitive.

Du côté de la Silicon Valley, on cherche des réponses de plus en plus fines aux désirs des utilisateurs, et cela d’autant mieux que les big data analytics offrent les moyens d’en tracer le portrait fidèle. Mais il me semble peu probable que l’amélioration incrémentale des services rendus par les grandes entreprises du Web, même guidée par une bonne stratégie marketing, nous mène spontanément à l’unification sémantique de la mémoire numérique. L’entreprise non commerciale du « Web sémantique » promeut d’utiles standards de fichier (XML, RDF) et des langages de programmation ouverts (comme OWL), mais ses nombreuses ontologies sont hétéroclites et elle a échoué à résoudre le problème de l’interopérabilité sémantique. Parmi les projets les plus avancés d’intelligence computationnelle, aucun ne vise explicitement la création d’une nouvelle génération d’outils symboliques. Certains nourrissent même la chimère d’ordinateurs conscients devenant autonomes et prenant le pouvoir sur la planète avec la complicité de cyborgs post-humain…

La lumière viendra-t-elle des recherches académiques sur l’intelligence collective et le knowledge management ? Depuis les travaux pionniers de Nonaka à la fin du XXe siècle, nous savons qu’une saine gestion des connaissances suppose l’explicitation et la communication des savoirs implicites. L’expérience des médias sociaux nous a enseigné la nécessité d’associer étroitement gestion sociale et gestion personnelle des connaissances. Or, dans les faits, la gestion des connaissances par les médias sociaux passe nécessairement par la curation distribuée d’une énorme quantité de données. C’est pourquoi, on ne pourra coordonner le travail de curation collective et exploiter efficacement les données qu’au moyen d’un codage sémantique commun. Mais personne ne propose de solution au problème de l’interopérabilité sémantique.

Le secours nous viendra-t-il des sciences humaines, par l’intermédiaire des fameuses digital humanities ? L’effort pour éditer et mettre en libre accès les corpus, pour traiter et visualiser les données avec les outils des big data et pour organiser les communautés de chercheurs autour de ce traitement est méritoire. Je souscris sans réserve à l’orientation vers le libre et l’open. Mais je ne discerne pour l’instant aucun travail de fond pour résoudre les immenses problèmes de fragmentation disciplinaire, de testabilité des hypothèses et d’hyper-localité théorique qui empêchent les sciences humaines d’émerger de leur moyen-âge épistémologique. Ici encore, nulle théorie de la cognition, ni de la cognition sociale, permettant de coordonner l’ensemble des recherches, pas de système de catégorisation sémantique inter-opérable en vue et peu d’entreprises pratiques pour remettre l’interrogation scientifique sur l’humain entre les mains des communautés elles-mêmes. Quant à diriger l’évolution technique selon les besoins de sciences humaines renouvelées, la question ne semble même pas se poser. Il ne reste finalement que la posture critique, comme celle que manifestent, par exemple, Evgeny Morozov aux Etats-Unis et d’autres en Europe ou ailleurs. Mais si les dénonciations de l’avidité des grandes compagnies de la Silicon Valley et du caractère simpliste, voire dérisoire, des conceptions politiques, sociales et culturelles des chantres béats de l’algorithme touchent souvent juste, on chercherait en vain du côté des dénonciateurs le moindre début de proposition concrète.

En conclusion, je ne discerne autour de moi aucun plan sérieux propre à mettre la puissance computationnelle et les torrents de données du médium algorithmique au service d’une nouvelle forme d’intelligence réflexive. Ma conviction, je la puise dans une longue étude du problème à résoudre. Quant à ma solitude provisoire en 2014, au moment où j’écris ces lignes, je me l’explique par le fait que personne n’a consacré plus de quinze ans à temps plein pour résoudre le problème de l’interopérabilité sémantique. Je m’en console en observant l’exemple admirable de Douglas Engelbart. Ce visionnaire a inventé les interfaces sensori-motrices et les logiciels collaboratifs à une époque où toutes les subventions allaient à l’intelligence artificielle. Ce n’est que bien des années après qu’il ait exposé sa vision de l’avenir dans les années 1960 qu’il fut suivi par l’industrie et la masse des utilisateurs à partir de la fin des années 1980. Sa vision n’était pas seulement technique. Il a appelé à franchir un seuil décisif d’augmentation de l’intelligence collective afin de relever les défis de plus en plus pressants qui se posent, encore aujourd’hui, à notre espèce. Je poursuis son travail. Après avoir commencé à dompter le calcul automatique par nos interactions sensori-motrices avec des hypertextes, il nous faut maintenant explicitement utiliser le médium algorithmique comme une extension cognitive. Mes recherches m’ont affermi dans la conviction que nulle solution technique ignorante de la complexité de la cognition humaine ne nous mènera à bon port. Nous ne pourrons obtenir une intelligence agrandie qu’avec une claire théorie de la cognition et une profonde compréhension des ressorts de la mutation anthropologique à venir. Enfin, sur un plan technique, le rassemblement de la sagesse collective de l’humanité nécessite une unification sémantique de sa mémoire. C’est en respectant toutes ces exigences que j’ai conçu et construit IEML, outil commun d’une nouvelle puissance intellectuelle, origine d’une révolution scientifique.

Les ressorts d’une révolution scientifique

La mise en oeuvre de mon programme de recherche ne sera pas moins complexe ou ambitieuse que d’autres grands projets scientifiques et techniques, comme ceux qui nous ont mené à marcher sur la Lune ou à déchiffrer le génome humain. Cette grande entreprise va mobiliser de vastes réseaux de chercheurs en sciences humaines, en linguistique et en informatique. J’ai déjà réuni un petit groupe d’ingénieurs et de traducteurs dans ma Chaire de Recherche de l’Université d’Ottawa. Avec les moyens d’un laboratoire universitaire en sciences humaines, j’ai trouvé le code que je cherchais et j’ai prévu de quelle manière son utilisation allait mener à une intelligence collective réflexive.

J’étais bien résolu à ne pas me laisser prendre au piège qui consisterait à aménager superficiellement quelque système symbolique de l’épistémè typographique pour l’adapter au nouveau médium, à l’instar des premiers wagons de chemin de fer qui ressemblaient à des diligences. Au contraire, j’étais persuadé que nous ne pourrions passer à une nouvelle épistémè qu’au moyen d’un système symbolique conçu dès l’origine pour unifier et exploiter la puissance du médium algorithmique.

images

Voici en résumé les principales étapes de mon raisonnement. Premièrement, comment pourrais-je augmenter effectivement l’intelligence collective sans en avoir de connaissance scientifique ? C’est donc une science de l’intelligence collective qu’il me faut. Je fais alors un pas de plus dans la recherche des conditions. Une science de l’intelligence collective suppose nécessairement une science de la cognition en général, car la dimension collective n’est qu’un aspect de la cognition humaine. J’ai donc besoin d’une science de la cognition. Mais comment modéliser rigoureusement la cognition humaine, sa culture et ses idées, sans modéliser au préalable le langage qui en est une composante capitale ? Puisque l’humain est un animal parlant – c’est-à-dire un spécialiste de la manipulation symbolique – un modèle scientifique de la cognition doit nécessairement contenir un modèle du langage. Enfin, dernier coup de pioche avant d’atteindre le roc : une science du langage ne nécessite-t-elle pas un langage scientifique ? En effet, vouloir une science computationnelle du langage sans disposer d’une langue mathématique revient à prétendre mesurer des longueurs sans unités ni instruments. Or je ne dispose avant d’avoir construit IEML que d’une modélisation algébrique de la syntaxe : la théorie chomskienne et ses variantes ne s’étendent pas jusqu’à la sémantique. La linguistique me donne des descriptions précises des langues naturelles dans tous leurs aspects, y compris sémantiques, mais elle ne me fournit pas de modèles algébriques universels. Je comprends donc l’origine des difficultés de la traduction automatique, des années 1950 jusqu’à nos jours.

Parce que le métalangage IEML fournit un codage algébrique de la sémantique il autorise une modélisation mathématique du langage et de la cognition, il ouvre en fin de compte à notre intelligence collective l’immense bénéfice de la réflexivité.

IEML, outil symbolique de la nouvelle épistémè

Si je dois contribuer à augmenter l’intelligence humaine, notre intelligence, il me faut d’abord comprendre ses conditions de fonctionnement. Pour synthétiser en quelques mots ce que m’ont enseigné de nombreuses années de recherches, l’intelligence dépend avant tout de la manipulation symbolique. De même que nos mains contrôlent des outils qui augmentent notre puissance matérielle, c’est grâce à sa capacité de manipulation de symboles que notre cognition atteint à l’intelligence réflexive. L’organisme humain a partout la même structure, mais son emprise sur son environnement physico-biologique varie en fonction des techniques mises en oeuvre. De la même manière, la cognition possède une structure fonctionnelle invariable, innée aux êtres humains, mais elle manie des outils symboliques dont la puissance augmente au rythme de leur évolution : écriture, imprimerie, médias électroniques, ordinateurs… L’intelligence commande ses outils symboliques par l’intermédiaire de ses idées et de ses concepts, comme la tête commande aux outils matériels par l’intermédiaire du bras et de la main. Quant aux symboles, ils fournissent leur puissance aux processus intellectuels. La force et la subtilité conférée par les symboles à la conceptualisation se répercute sur les idées et, de là, sur la communication et la mémoire pour soutenir, en fin de compte, les capacités de l’intelligence.

J’ai donc construit le nouvel outil de telle sorte qu’il tire le maximum de la nouvelle puissance offerte par le médium algorithmique global. IEML n’est ni un système de classification, ni une ontologie, ni même une super-ontologie universelle, mais une langue. Comme toute langue, IEML noue une syntaxe, une sémantique et une pragmatique. Mais c’est une langue artificielle : sa syntaxe est calculable, sa sémantique traduit les langues naturelles et sa pragmatique programme des écosystèmes d’idées. La syntaxe, la sémantique et la pragmatique d’IEML fonctionnent de manière interdépendante. Du point de vue syntaxique, l’algèbre d’IEML commande une topologie des relations. De ce fait, les connexions linguistiques entre textes et hypertextes dynamiques se calculent automatiquement. Du point de vue sémantique, un code – c’est-à-dire un système d’écriture, une grammaire et un dictionnaire multilingue – donne sens à l’algèbre. Il en résulte que chacune des variables de l’algèbre devient un noeud d’inter-traduction entre langues naturelles. Les utilisateurs peuvent alors communiquer en IEML tout en utilisant la – ou les – langues naturelles de leur choix. Du point de vue pragmatique enfin, IEML commande la simulation d’écosystèmes d’idées. Les données catégorisées en IEML s’organisent automatiquement en hypertextes dynamiques, explorables et auto-explicatifs. IEML fonctionne donc en pratique comme un outil de programmation distribuée d’une simulation cognitive globale.

Le futur algorithmique de l’intelligence

Lorsqu’elle aura pris en main ce nouvel outil symbolique, notre espèce laissera derrière elle une épistémè typographique assimilée et assumée pour entrer dans le vaste champ de l’intelligence algorithmique. Une nouvelle mémoire accueillera des torrents de données en provenance de milliards de sources et transformera automatiquement le déluge d’information en hypertextes dynamiques auto-organisateurs. Alors que Wikipedia conserve un système de catégorisation hérité de l’épistémè typographique, une bibliothèque encyclopédique perspectiviste s’ouvrira à tous les systèmes de classification possibles. En s’auto-organisant en fonction des points de vue adoptés par leurs explorateurs, les données catégorisées en IEML reflèteront le fonctionnement multi-polaire de l’intelligence collective.

Les relations entre hypertextes dynamiques vont se projeter dans une fiction calculée multi-sensorielle explorable en trois dimensions. Mais c’est une réalité cognitive que les nouveaux mondes virtuels vont simuler. Leur spatio-temporalité sera donc bien différente de celle du monde matériel puisque c’est ici la forme de l’intelligence, et non celle de la réalité physique ordinaire, qui va se laisser explorer par la sensori-motricité humaine.

De la curation collaborative de données émergera de nouveaux types de jeux intellectuels et sociaux. Des collectifs d’apprentissage, de production et d’action communiqueront sur un mode stigmergique en sculptant leur mémoire commune. Les joueurs construiront ainsi leurs identités individuelles et collectives. Leurs tendances émotionnelles et les directions de leurs attentions se reflèteront dans les fluctuations et les cycles de la mémoire commune.

A partir de nouvelles méthodes de mesure et de comptabilité sémantique basés sur IEML, l’ouverture et la transparence des processus de production de connaissance vont connaître un nouvel essor. Les études de la cognition et de la conscience disposeront non seulement d’une nouvelle théorie, mais aussi d’un nouvel instrument d’observation, d’analyse et de simulation. Il deviendra possible d’accumuler et de partager l’expertise sur la culture des écosystèmes d’idées. Nous allons commencer à nous interroger sur l’équilibre, l’interdépendance, la fécondité croisée de ces écosystèmes d’idées. Quels services rendent-ils aux communautés qui les produisent ? Quels sont leurs effets sur le développement humain ?

Le grand projet d’union des intelligences auquel je convie ne sera le fruit d’aucune conquête militaire, ni de la victoire sur les esprits d’une idéologie politique ou religieuse. Elle résultera d’une révolution cognitive à fondement techno-scientifique. Loin de tout esprit de table rase radicale, la nouvelle épistémè conservera les concepts des épistémè antérieures. Mais ce legs du passé sera repris dans un nouveau contexte, plus vaste, et par une intelligence plus puissante.

[Image en tête de l’article: “Le Miroir” de Paul Delvaux, 1936]

Follow

Get every new post delivered to your Inbox.

Join 25,031 other followers