Cette entrée de blog propose le texte de ma conférence d’ouverture du Forum “Montréal Connecte” d’octobre 2023 consacré à l’intelligence collective à support numérique. Pour ceux qui préfèrent la vidéo, elle est là (ça commence à la vingtième minute) : https://www.youtube.com/watch?v=dTMU-j8nYio&t=7s
INTRODUCTION
Il y a maintenant presque 30 ans j’ai publié un livre consacré à l’intelligence collective à support numérique qui était, modestie à part, le premier à traiter ce sujet. Dans cet ouvrage, je prévoyais que l’Internet allait devenir le principal medium de communication, que cela provoquerait un changement de civilisation, et je disais que le meilleur usage que nous pouvions faire des technologies numériques était d’augmenter l’intelligence collective (et j’ajoute : une intelligence collective émergente, de type “bottom up”).

Le public de ma conférence d’ouverture à “Montreal Connecte” le 10 octobre 2023
A cette époque moins de 1% de l’humanité était branchée sur l’Internet alors que nous avons aujourd’hui – en 2023 – dépassé les deux tiers de la population mondiale connectée. Le changement de civilisation semble assez évident, bien qu’il faille attendre normalement plusieurs générations pour confirmer ce type de mutation, sans oublier que nous ne sommes qu’au commencement de la révolution numérique. Quant à l’augmentation de l’intelligence collective, de nombreux pas ont été franchis pour mettre les connaissances à la portée de tous (Wikipédia, le logiciel libre, les bibliothèques et les musées numérisés, les articles scientifiques en accès libre, certains aspects des médias sociaux, etc.). Mais beaucoup reste à faire. Utiliser l’intelligence artificielle pour augmenter l’intelligence collective semble une voie prometteuse, mais comment avancer dans cette direction ? Pour répondre à cette question de manière rigoureuse, je vais devoir définir préalablement quelques concepts.
QU’EST-CE QUE L’INTELLIGENCE?
Avant même de traiter la relation entre l’intelligence collective humaine et l’intelligence artificielle, essayons de définir en quelques mots l’intelligence en général et l’intelligence humaine en particulier. On dit souvent que l’intelligence est la capacité de résoudre des problèmes. A quoi je réponds: oui, mais c’est aussi et surtout la capacité de concevoir ou de construire des problèmes. Or si l’on a un problème c’est que l’on essaye d’obtenir un certain résultat et que l’on est confronté à une difficulté ou à un obstacle. Autrement dit, il y a un soi, un même, qu’on appellera l’« Un », qui est pourvu d’une logique interne, qui doit se maintenir dans certaines limites homéostatiques, qui a des finalités immanentes comme la reproduction, l’alimentation ou le développement et il y a un « Autre », une extériorité, qui obéit à une logique différente, qui se confond avec l’environnement ou qui appartient à l’environnement de l’Un et avec qui l’Un doit transiger. L’entité intelligente doit avoir une certaine autonomie, sinon elle ne serait pas intelligente du tout, mais cette autonomie n’est pas une autarcie ou une indépendance absolue car, dans ce cas, elle n’aurait aucun problème à résoudre et n’aurait pas besoin d’être intelligente.
Le rapport entre l’Un et l’Autre peut se ramener à une communication ou une interaction entre des entités qui sont régies par des manières d’être, des codes, des finalités hétérogènes et qui imposent donc un processus incertain et perfectible de codage et de décodage, processus qui engendre forcément des pertes, des créations et qui est soumis à toutes sortes de bruits et de parasitages.
L’entité intelligente n’est pas forcément un individu, ce peut être une société ou un écosystème. D’ailleurs, à l’analyse, on trouvera souvent à sa place un écosystème de molécules, de cellules, de neurones, de modules cognitifs, et ainsi de suite. Quant au rapport entre l’Un et l’Autre, il constitue la maille élémentaire d’un réseau écosystémique quelconque. L’intelligence est le fait d’un écosystème en relation avec d’autres écosystèmes, elle est collective par nature. En somme le problème revient à optimiser la communication avec un Autre hétérogène en fonction des finalités de l’Un et la solution n’est autre que l’histoire effective de leurs relations.
LES COUCHES DE COMPLEXITÉ DE L’INTELLIGENCE
Nous nous interrogeons principalement sur l’intelligence humaine augmentée par le numérique. N’oublions pas, cependant que notre intelligence repose sur des couches de complexité bien antérieures à l’apparition de l’espèce Homo sur la Terre. Les couches de complexité organique et animale sont toujours actives et indispensables à notre propre intelligence puisque nous sommes des êtres vivants pourvus d’un organisme et des animaux pourvus d’un système nerveux. C’est d’ailleurs pourquoi l’intelligence humaine est toujours incarnée et située.
Avec les organismes, viennent les propriétés bien connues d’autoreproduction, d’auto-référence et d’auto-réparation qui s’appuient sur une communication moléculaire et sans doute aussi des formes de communication électromagnétique complexe. Je ne développerai pas ici le thème de l’intelligence organique. Qu’il suffise de signaler que certains chercheurs en biologie et en écologie parlent désormais d’une “cognition végétale”.
Le développement du système nerveux découle des nécessités de la locomotion. Il s’agit d’abord d’assurer la boucle sensori-motrice. Au cours de l’évolution, cette boucle réflexe s’est complexifiée en simulation de l’environnement, évaluation de la situation et calcul décisionnel menant à l’action. L’intelligence animale résulte d’un pli de l’intelligence organique sur elle-même puisque le système nerveux cartographie et synthétise ce qui se passe dans l’organisme et le contrôle en retour. L’expérience phénoménale naît de cette réflexion.
En effet, le système nerveux produit une expérience phénoménale, ou conscience, qui se caractérise par l’intentionnalité, à savoir le fait de se rapporter à quelque chose qui n’est pas forcément l’animal lui-même. L’intelligence animale se représente l’autre. Elle est habitée par des images sensorielles multimodales (cénesthésie, toucher, goût, odorat, audition, vue), le plaisir et la douleur, les émotions, le cadrage spatio-temporel indispensable à la locomotion, le rapport à un territoire, une communication sociale souvent complexe. Il est clair que les animaux sont capables de reconnaître des proies, des prédateurs ou des partenaires sexuels et d’agir en conséquence. Ceci n’est possible que parce que des circuits neuronaux codent des schémas d’interaction ou concepts qui orientent, coordonnent et donnent sens à l’expérience phénoménale.
L’INTELLIGENCE HUMAINE
Je viens d’évoquer l’intelligence animale, qui repose sur le système nerveux. Comment caractériser l’intelligence humaine, supportée par le codage symbolique ? Les catégories générales, concepts et schémas d’interaction qui étaient simplement codés par des circuits neuronaux dans l’intelligence animale sont maintenant aussi représentés dans l’expérience phénoménale par l’intermédiaire des systèmes symboliques, dont le plus important est le langage. Des images signifiantes (paroles, écrits, représentations visuelles, gestes rituels…) représentent des concepts abstraits et ces concepts peuvent se combiner syntaxiquement pour former des architectures sémantiques complexes.
Dès lors, la plupart des dimensions de l’expérience phénoménale humaine – y compris la sensori-motricité, l’affectivité, la spatio-temporalité et la mémoire – se projettent sur les systèmes symboliques et sont contrôlées en retour par la pensée symbolique. L’intelligence et la conscience humaines sont réflexives. En outre, pour que se forme cette pensée symbolique, il faut que des systèmes symboliques, qui sont toujours d’origine sociale, soient internalisés par les individus, deviennent partie intégrante de leur psychisme et s’inscrivent “en dur” dans leurs systèmes nerveux. Il en résulte que la communication symbolique embraye directement sur les systèmes nerveux humains. Nous ne pouvons pas ne pas comprendre ce que dit quelqu’un si nous connaissons la langue. Et les effets sur nos émotions et nos représentations mentales sont quasi inévitables. On pourrait également prendre l’exemple de la synchronisation psycho-physique et affective produite par la musique. C’est pourquoi la cohésion sociale humaine est au moins aussi forte que celle des animaux eusociaux comme les abeilles et les fourmis.
On remarquera que la figure 3, comme plusieurs des figures qui vont suivre, évoque un partage et une interdépendance entre virtuel et actuel. En 1995, j’ai publié un livre sur le virtuel qui était à la fois une méditation philosophique et anthropologique sur le concept de virtualité et un essai de mise au travail de ce concept sur des objets contemporains. Ma thèse philosophique est simple : ce qui n’est que possible, mais non réalisé, n’existe pas. Par contraste, ce qui n’est que virtuel mais non actualisé existe. Le virtuel, ce qui est en puissance, abstrait, immatériel, informationnel ou idéal pèse sur les situations, conditionne nos choix, provoque des effets et entre dans une dialectique ou dans un rapport d’interdépendance avec l’actuel.
L’ÉCOSYSTÈME DE L’INTELLIGENCE COLLECTIVE
La figure 4 ci-dessous cartographie les principaux pôles de l’intelligence collective humaine ou, si l’on préfère, la culture qui vient avec la pensée symbolique. Le diagramme est organisé par deux symétries qui se croisent. La première symétrie – binaire – est celle du virtuel et de l’actuel. L’actuel est plongé dans l’espace et le temps, il est plutôt concret alors que le virtuel est plutôt abstrait et n’a pas d’adresse spatio-temporelle. La seconde symétrie – ternaire – est celle du signe, de l’être (l’interprétant) et de la chose (le référent), qui est inspiré du triangle sémiotique. La chose est ce que représente le signe et l’être est le sujet pour qui le signe représente la chose. A gauche (signe) se tiennent les systèmes symboliques, le savoir et la communication ; au milieu (être) se dressent la subjectivité, l’éthique et la société ; à droite (chose) s’étendent la capacité de faire, l’économie, la technique, la dimension physique. Il s’agit bien d’intelligence collective parce que les six sommets de l’hexagone sont interdépendants: les lignes vertes (les relations) sont aussi importantes, sinon plus, que les points où elles aboutissent.
Cette grille de lecture est valable pour la société en général mais également pour n’importe quelle communauté particulière. Au passage, virtuel, actuel, signe, être et chose sont (avec le vide) les primitives sémantiques du langage IEML (Information Economy MetaLanguage) que j’ai inventé et dont je dirai quelques mots plus bas.
Les six sommets de l’hexagone ne sont pas seulement les principaux points d’appui de l’intelligence collective humaine, ce sont aussi des univers de problèmes à résoudre:
- problèmes de création de connaissance et d’apprentissage
- problèmes de communication
- problèmes de législation et d’éthique
- problèmes sociaux et politiques
- problèmes économiques
- problèmes techniques, problèmes de santé et d’environnement.
Comment résoudre ces problèmes?
LE CYCLE AUTO-ORGANISATEUR DE L’INTELLIGENCE COLLECTIVE
La Figure 5 ci-dessous représente un cycle de résolution de problème en quatre étapes. Pour chacune des quatre phases du cycle (délibération, décision, action et observation), il existe un grand nombre de procédures différentes selon les traditions et les contextes où opère l’intelligence collective. Vous remarquerez que la délibération représente la phase virtuelle du cycle alors que l’action en représente la phase actuelle. Dans ce modèle, la décision fait la transition entre le virtuel et l’actuel tandis que l’observation passe de l’actuel au virtuel. Je voudrais insister ici sur deux concepts, la délibération et la mémoire, auxquels il arrive qu’on ne prête pas assez attention dans ce contexte.
Soulignons d’abord l’importance de la délibération, qui ne consiste pas seulement à discuter des meilleures solutions pour surmonter les obstacles mais aussi à construire et conceptualiser les problèmes de manière collaborative. Cette phase de conceptualisation va fortement impacter et même définir une bonne part des phases suivantes, elle va aussi déterminer l’organisation de la mémoire.
En effet, vous voyez sur le diagramme de la Figure 5 que la mémoire se trouve au centre du processus d’auto-organisation de l’intelligence collective. La mémoire partagée vient en appui de chacune des phases du cycle et contribue au maintien de la coordination, de la cohérence et de l’identité de l’intelligence collective. La communication indirecte par l’intermédiaire d’un environnement partagé est l’un des principaux mécanismes qui sous-tend l’intelligence collective des sociétés d’insectes, que l’on appelle la communication stigmergique dans le vocabulaire des éthologues. Mais alors que les insectes laissent généralement des traces de phéromones dans leurs environnements physiques pour guider l’action de leurs congénères, nous laissons des traces symboliques et cela non seulement dans le paysage mais aussi dans des dispositifs de mémoire spécialisés comme les archives, les bibliothèques et aujourd’hui les bases de données. Le problème de l’avenir de la mémoire numérique est devant nous : comment concevoir cette mémoire de telle sorte qu’elle soit la plus utile possible à notre intelligence collective?
VERS UNE INTELLIGENCE ARTIFICIELLE AU SERVICE DE L’INTELLIGENCE COLLECTIVE
Ayant acquis quelques notions de l’intelligence en général, des fondements de l’intelligence humaine et de la complexité de notre intelligence collective, nous pouvons maintenant nous interroger sur la relation de notre intelligence avec les machines.
La figure 6 propose une vue d’ensemble de notre situation. Au milieu, le « vivant » : les populations humaines, avec les corps actuels et les esprits virtuels des individus. Immédiatement au contact des individus, les machines matérielles (ou corps mécanique) du côté actuel et, du côté virtuel, les machines logicielles (ou esprit mécanique). Les machines matérielles jouent de plus en plus un rôle d’interface ou de medium entre nous et les écosystèmes terrestres. Quant aux machines logicielles, elles sont en train de devenir le principal intermédiaire – un médium encore une fois – entre les populations humaines et les écosystèmes d’idées avec lesquelles nous vivons en symbiose. Quant à la conscience collective, nous n’y sommes pas encore. Elle représente plus un horizon, une direction d’évolution à viser qu’une réalité. Il faut comprendre la Figure 6 en y ajoutant mentalement des boucles de rétroaction ou d’interdépendance entre les couches adjacentes, entre le virtuel et l’actuel, entre le mécanique et le vivant. Sur un plan éthique, on peut faire l’hypothèse que les collectivités humaines vivantes reçoivent les bienfaits des écosystèmes terrestres et des écosystèmes d’idées en proportion du travail et du soin qu’elles apportent à leur entretien.
L’AUTOMATISATION DE L’INTELLIGENCE
Effectuons un zoom avant sur notre environnement mécanique avec la Figure 7. Une machine est un dispositif technique construit par les humains, un automate qui bouge ou fonctionne “tout seul”. Aujourd’hui les deux types de machines – logicielles et matérielles – sont interdépendantes. Elles ne pourraient pas exister l’une sans l’autre et elles sont en principe contrôlées par les collectivités humaines dont elles augmentent les capacités physiques et mentales. Parce que la technique externalise, socialise et réifie les fonctions organiques et psychiques humaines elle peut parfois paraître autonome ou à risque de s’autonomiser, mais c’est une illusion d’optique. Derrière “la machine” il faut entrevoir l’intelligence collective et les rapports sociaux qu’elle réifie et mobilise.
Les machines mécaniques sont celles qui transforment le mouvement, à commencer par la voile, la roue, la poulie, le levier, les engrenages, les ressorts, etc. Citons comme exemples de machines purement mécaniques les moulins à eau ou à vent, les horloges classiques, les presses à imprimer de la Renaissance ou les premiers métiers à tisser.
Les machines énergétiques sont celles qui transforment l’énergie en impliquant de la chaleur ou de l’électricité. Citons les fours, les forges, les machines à vapeur, les moteurs à explosion, les moteurs électriques, et les procédés contemporains pour produire, transmettre et stocker l’électricité.
Quand aux machines électroniques, elles contrôlent l’énergie et la matière au niveau des champs électromagnétiques et des particules élémentaires et servent bien souvent à contrôler les machines de couches inférieures dont, par ailleurs, elles dépendent. Pour ce qui nous intéresse ici, ce sont principalement les centres de données (le “cloud”), les réseaux et les appareils qui sont directement au contact des utilisateurs finaux (le “edge”) tels qu’ordinateurs, téléphones, consoles de jeux, casques de réalité virtuelle et autres.
Abordons la partie virtuelle qui correspond à la mémoire partagée que nous avions mise au centre de notre description du cycle auto-organisateur de l’action collective. Si l’échange de messages point à point a toujours lieu, la majeure part de la communication sociale s’effectue désormais de manière stigmergique dans la mémoire numérique. Nous communiquons par l’intermédiaire de la masse océanique de données qui nous rassemble. Chaque lien que nous créons, chaque étiquette ou hashtag apposée sur une information, chaque acte d’évaluation ou d’approbation, chaque « j’aime », chaque requête, chaque achat, chaque commentaire, chaque partage, toutes ces opérations modifient subtilement la mémoire commune, c’est-à-dire le magma inextricable des rapports entre les données. Notre comportement en ligne émet un flux continuel de messages et d’indices qui transforment la structure de la mémoire, contribuent à orienter l’attention et l’activité de nos contemporains et entraîne les intelligences artificielles. Mais tout cela se fait aujourd’hui d’une manière plutôt opaque, qui ne rend pas justice à la nécessaire phase de délibération et de conceptualisation consciente qui serait celle d’une intelligence collective idéale.
La mémoire comprend avant tout les données qui sont produites, retrouvées, explorées et exploitées par l’activité humaine. Les interfaces Homme-Machine représentent le “front-end” sans lequel rien n’est possible. Elles déterminent directement ce qu’on appelle l’expérience de l’utilisateur. Entre les interfaces et les données, s’interposent principalement deux types de modèles d’intelligence artificielle, les modèles neuronaux et les modèles symboliques. Nous avons vu plus haut que l’intelligence humaine « naturelle » reposait notamment sur un codage neuronal et sur un codage symbolique. Or nous retrouvons ces deux types de codage, ou plutôt leur transposition électronique, à la couche de la mémoire numérique. Remarquons que ces deux approches, neuronale et symbolique, existaient déjà aux premiers temps de l’IA, dès le milieu du XXe siècle.
Les modèles neuronaux sont entraînés sur la multitude des données numériques disponibles et ils en extraient automatiquement des patterns de patterns qu’aucun programmeur humain n’aurait pu tirer au clair. Conditionnés par leur entraînement, les algorithmes peuvent alors reconnaître et produire des données correspondant aux formes apprises. Mais parce qu’ils ont abstrait des structures plutôt que de tout enregistrer, les voici capables de catégoriser correctement des formes (d’image, de texte, de musique, de code…) qu’ils n’ont jamais rencontrées et de produire une infinité d’arrangements symboliques nouveaux. C’est pourquoi l’on parle d’intelligence artificielle générative. L’IA neuronale synthétise et mobilise la mémoire commune. Bien loin d’être autonome, elle prolonge et amplifie l’intelligence collective qui a produit les données. Ajoutons que des millions d’utilisateurs contribuent au perfectionnement des modèles en leur posant des questions et en commentant les réponses qu’ils en reçoivent. On peut prendre l’exemple de Midjourney, dont les utilisateurs s’échangent leurs consignes (prompts) et améliorent constamment leurs compétences en IA. Les serveurs Discord de Midjourney sont aujourd’hui les plus populeux de la planète, avec plus d’un million d’utilisateurs. On commence à observer un phénomène semblable autour de DALLE 3. Une nouvelle intelligence collective stigmergique émerge de la fusion des médias sociaux, de l’IA et des communautés de créateurs. Ce sont des exemples d’une contribution consciente de l’intelligence collective humaine à des dispositifs d’intelligence artificielle.
De nombreux modèles pré-entraînés généralistes sont open-source et plusieurs méthodes sont aujourd’hui utilisées pour les raffiner ou les ajuster à des contextes particuliers, que ce soit à partir de consignes élaborées, d’un entraînement supplémentaire avec des données spéciales ou au moyen de feed-back humain, ou d’une combinaison de ces méthodes. En somme nous disposons aujourd’hui des premiers balbutiements d’une intelligence collective neuronale, qui émerge à partir d’un calcul statistique sur les données. Observons toutefois que les modèles neuronaux, aussi utiles et pratiques qu’ils soient, ne sont malheureusement pas des bases de connaissance fiables. Ils reflètent forcément l’opinion commune et les biais que charrient les données. Du fait de leur nature probabiliste, ils commettent toutes sortes d’erreurs. Enfin, ils ne savent pas justifier leur résultats et cette opacité n’est pas faite pour inciter à la confiance. L’esprit critique est donc plus que jamais nécessaire, surtout si les données d’entrainement sont de plus en plus produites par l’IA générative, ce qui crée un dangereux cercle vicieux épistémologique.
Intéressons-nous maintenant aux modèles symboliques. On les appelle de différents noms : collections de tags ou d’étiquettes, classifications, ontologies, graphes de connaissance ou réseaux sémantique. Ces modèles peuvent se ramener à des concepts explicites et à des relations tout aussi explicites entre ces concepts, y compris des relations causales. Ils permettent d’organiser les données sur un plan sémantique en fonction des besoins pratiques des communautés utilisatrices et ils autorisent le raisonnement automatique. Avec cette approche, on obtient des connaissances fiables, explicables, directement adaptées à l’usage que l’on vise. Les bases de connaissances symboliques sont de merveilleux moyens de partage des savoirs et des compétences, et donc d’excellents outils d’intelligence collective. Le problème vient de ce que les ontologies ou graphes de connaissances sont créées “à la main”. Or la modélisation formelle de domaines de connaissance complexes est difficile. La construction de ces modèles prend beaucoup de temps à des experts hautement spécialisés et coûte donc cher. La productivité de ce travail intellectuel est faible. D’autre part, s’il existe une interopérabilité au niveau des formats de fichiers pour les métadonnées sémantiques (ou systèmes de classification), cette interopérabilité n’existe pas au niveau proprement sémantique des concepts, ce qui cloisonne l’intelligence collective. On utilise Wikidata pour les applications encyclopédiques, schema.org pour les sites web, le modèle CIDOC-CRM pour les institutions culturelles, etc. Il existe des centaines d’ontologies incompatibles d’un domaine à l’autre et souvent même au sein d’un même domaine.
Cela fait des années que de nombreux chercheurs plaident en faveur de modèles hybrides neuro-symboliques afin de bénéficier des avantages des deux approches. Mon message est le suivant: si nous voulons avancer vers une intelligence collective à support numérique digne de ce nom et qui se tienne à la hauteur de nos possibilités techniques contemporaines, il nous faut :
- Renouveler l’IA symbolique en augmentant la productivité du travail de modélisation formelle et en décloisonnant les métadonnées sémantiques.
- Coupler cette IA symbolique renouvelée avec l’IA neuronale en plein développement.
- Mettre cette IA hybride encore inédite au service de l’intelligence collective.
IEML : VERS UNE BASE DE CONNAISSANCE SÉMANTIQUE
Nous avons automatisé et mutualisé la reconnaissance et la génération automatique de formes, qui est plutôt d’essence neuronale. Comment pouvons-nous automatiser et mutualiser la conceptualisation, qui est plutôt d’essence symbolique? Comment faire travailler ensemble la conceptualisation formelle par des êtres pensants et la reconnaissance de formes qui émerge des statistiques?
Parce que notre intelligence collective repose de plus en plus sur une mémoire numérique commune, cela fait trente ans que je cherche ce que pourrait être un système de coordonnées sémantiques pour la mémoire numérique, un système de métadonnées qui permettrait l’automatisation des opérations de conceptualisation et la mutualisation des modèles conceptuels.
Or la seule chose qui soit capable de générer tous les concepts que l’on voudra tout en maintenant la compréhension réciproque, c’est une langue. Mais les langues naturelles sont irrégulières, ambiguës et leur sémantique n’est pas calculable. J’ai donc construit une langue – IEML (Information Economy MetaLanguage) – dont les relations sémantiques internes sont des fonctions des relations syntaxiques. IEML est à la fois une langue et une algèbre. Cette langue est faite pour faciliter et automatiser autant que possible la construction de modèles symboliques tout en assurant leur interopérabilité sémantique. En somme c’est un outil permettant d’automatiser et de mutualiser la conceptualisation qui a vocation à servir de système de métadonnées sémantiques universel.
Nous pouvons maintenant répondre à notre question principale : comment utiliser l’intelligence artificielle pour augmenter l’intelligence collective? Il faut imaginer un écosystème de bases de connaissances sémantiques organisées selon l’architecture décrite sur la figure 8. Vous voyez qu’entre l’interface Homme-Machine et les données s’interposent trois couches. Au centre la couche des métadonnées sémantiques organise les données sur un plan symbolique et permet, grâce à sa structure algébrique, toutes sortes de calculs uniformes de type logique, analogique et sémantique. Nous savons que la modélisation symbolique est difficile et les éditeurs d’ontologies contemporains ne facilitent pas vraiment la tâche. C’est pourquoi, sous la couche des métadonnées je propose d’utiliser un modèle neuronal pour traduire les systèmes de signes naturels en IEML et vice versa ce qui favoriserait l’édition et l’inspection la plus intuitive possible des modèles sémantiques. Entre la couche des métadonnées et celle des données se trouve encore un modèle neuronal qui permettra la génération automatique de données à partir de consignes (prompts) en IEML. En sens inverse, le modèle neuronal effectuerait la classification automatique des données et leur intégration dans le modèle sémantique de la communauté utilisatrice. Notons que les propriétés algébriques d’IEML visent notamment un perfectionnement de l’apprentissage neuronal.
L’interface Homme-Machine immersive utilisant des signes naturels permettrait à tout un chacun de collaborer à la conceptualisation des modèles au niveau des métadonnées sémantiques et de générer les données appropriées au moyen de consignes (prompts) transparentes. Enfin, cette base de connaissance automatiserait la catégorisation, l’exploitation et l’exploration multimédia des données.
Une telle approche permettrait à chaque communauté de s’organiser selon son propre modèle sémantique tout en supportant la comparaison et l’échange de concepts et de sous-modèles. En somme, un écosystème de bases de connaissances sémantiques utilisant IEML maximiserait simultanément, (1) l’augmentation de la productivité intellectuelle par l’automatisation partielle de la conceptualisation, (2) la transparence des modèles et l’explicabilité des résultats, si importantes d’un point de vue éthique, (3) la mutualisation des modèles et des données grâce à un système de coordonnées sémantique commun, (4) la diversité et la liberté créative puisque les réseaux de concepts formulés en IEML peuvent se différentier et se complexifier à volonté. Un beau programme pour l’intelligence collective. J’appelle de mes vœux une mémoire numérique qui nous permettra de cultiver des écosystèmes d’idées divers, féconds et d’en récolter le maximum de fruits pour le développement humain.





























